摘要
在外力是后向缓增的情况下,通过对解的估计,证明了非自治随机p-Laplacian格点方程在空间l 2上存在后向一致吸收集,且方程在吸收集上是后向渐进紧的.再利用吸引子的存在性定理,证明了非自治随机p-Laplacian格点方程在空间l 2上存在后向紧随机吸引子.
When the external force is backward tempered,it is proved that the nonautonomous random p-Laplacian lattice equation has a backward uniform absorbing set on the space l 2 and the equation is backward asymptotically compact on the absorbing set by estimating the solution.By using the existence theorem of the attractor,it is proved that the nonautonomous random p-Laplacian lattice equation has a backward compact random attractor on the space l 2.
作者
宋立
李扬荣
SONG Li;LI Yang-rong(School of Mathematics and Statistics,Southwest University,Chongqing 400715,China)
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2021年第4期92-99,共8页
Journal of Southwest University(Natural Science Edition)
基金
国家自然科学基金项目(11571283).