期刊文献+

基于免疫克隆的图像稀疏分解算法研究 被引量:1

Research on sparse decomposition algorithm of hyperspectral image based on immune cloning
下载PDF
导出
摘要 图像的稀疏分解能够得到信号的简洁表达形式,提高后续处理的效率。采用冗余字典对图像信号进行稀疏表示时,更容易捕捉到信号的特征。文中构建了谐波小波包冗余字典,采用免疫克隆的生物进化思想,利用免疫克隆、克隆变异、克隆选择的操作算子完成抗体的更新进化,以寻找到最优原子,并利用最优原子对原始图像进行稀疏表示。采用Matlab软件进行仿真,对高光谱图像和一般二维图像进行稀疏分解。实验结果表明,谐波小波包字典得到的重构图像的峰值信噪比高出Gabor冗余字典2 dB以上,且重构图像更加光滑,充分说明谐波小波字典具有更强的稀疏表示能力。 The sparse decomposition of the images can obtain a concise expression form of the signal and improve the efficiency of subsequent processing.When the redundant dictionary is used to sparsely represent the image signal,it is easier to capture the characteristics of the signal.The paper constructs a harmonic wavelet packet redundancy dictionary,adopts the biological evolution idea of immune cloning,and uses the operators of immune cloning,clonal mutation,and clonal selection to complete the update and evolution of antibodies to find the optimal atom,and then uses the optimal atoms to sparse represent the original image.Using Matlab software for simulation,the hyperspectral image and general two⁃dimensional image are sparsely decomposed.The experimental results show that the peak signal⁃to⁃noise ratio of the reconstructed image obtained by the harmonic wavelet packet dictionary is 2 dB higher than that of the Gabor redundancy dictionary,and the reconstructed image is smoother,which fully demonstrates that the harmonic wavelet dictionary has stronger sparse representation ability.
作者 王丽 王威 刘勃妮 WANG Li;WANG Wei;LIU Boni(School of Electronic Engineering,Xi’an Aeronautical University,Xi’an 710077,China)
出处 《电子设计工程》 2021年第7期1-5,共5页 Electronic Design Engineering
基金 国家自然科学基金项目(61901350) 西安航空学院校级科研基金(2019KY0208)。
关键词 稀疏分解 谐波小波包字典 免疫克隆算法 峰值信噪比 sparse decomposition harmonic wavelet packet dictionary immune cloning algorithm peak signal⁃to⁃noise ratio
  • 相关文献

参考文献6

二级参考文献43

  • 1王奉涛,马孝江,邹岩崑,张志新.基于小波包分解的频带局部能量特征提取方法[J].农业机械学报,2004,35(5):177-180. 被引量:43
  • 2StCphane G M,Zhang Zhifeng.Matching pursuits with time-frequency dictionaries[J].IEEE Trans.on Signal Processing,1993,41(12):3 397-3 415.
  • 3Durka P J,Szelenberger W,Blinowska K J,et al.Adaptive time-frequency parametrization in pharmaco EEG[J].Journal of Neuroscience Methods,2002,117(1):65-71.
  • 4Liu B,Ling S F.Gribonval R.Bearing failure detection using matching pursuit[J].NDT & E International,2002,35(4):255-262.
  • 5Newland D E.Wavelet analysis of vibration,part 1:theory[J].Journal of Vibration and Acoustics,1994,116:409-416.
  • 6Newland D E.Wavelet analysis of vibration,part 2:wavelet maps[J].Journal of Vibration and Acoustics,1994,116:417-425.
  • 7Yan Ruqiang,Robert X Gao.An efficient approach to machine health diagnosis based on harmonic wavelet packet transform[J].Robotics and Computer-integrated Manufacturing,2005,21(4-5):291-301.
  • 8温和,滕召胜,卿柏元.Hanning自卷积窗及其在谐波分析中的应用[J].电工技术学报,2009,24(2):164-169. 被引量:83
  • 9陈桂昌,师亚东,吕旗.电力系统谐波的危害及防治[J].天中学刊,2009,24(2):38-39. 被引量:2
  • 10杨洪耕,惠锦,侯鹏.电力系统谐波和间谐波检测方法综述[J].电力系统及其自动化学报,2010,22(2):65-69. 被引量:56

共引文献32

同被引文献10

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部