期刊文献+

基于NSGA-Ⅱ与BIM5D的工期-成本优化 被引量:4

Time Cost Optimization Based on Improved NSGA-ⅡAlgorithm and BIM5D
下载PDF
导出
摘要 为达到工程项目效益最大化,实现工期与成本的综合优化目标,提出一种改进NSGA-Ⅱ算法与BIM5D结合的寻优方法,对工期-成本优化问题进行求解。考虑投产效益对成本的影响,完善了工期-成本多目标优化模型。为解决NSGA-Ⅱ算法寻优过程中搜索空间小,准确度低的问题,在引进动态交叉、变异概率基础上,设计求解该模型的改进NSGA-Ⅱ算法。并将算法与BIM5D平台对接,进行施工工序及资金、资源曲线模拟,提高单一算法寻优实践性。案例分析表明,改进NSGA-Ⅱ算法与BIM5D结合求解工期-成本优化问题可有效优化进度和成本目标。 In order to maximize the benefits of engineering projects and realize the comprehensive optimization goal of construction period and cost,an optimization method combining improved NSGA-Ⅱalgorithm and BIM5D is proposed to solve the problem of construction period cost optimization.Considering the impact of production efficiency on costs,the construction period cost multi objective optimization model was improved.In order to solve the problem of small search space and low accuracy in the optimization process of NSGA-Ⅱalgorithm,based on the introduction of dynamic crossover and mutation probability,an improved NSGA-Ⅱalgorithm for solving the model is designed.The algorithm is docked with the BIM5D platform to simulate the construction process and the capital and resource curve to improve the practice of single algorithm optimization.Case analysis shows that the improved NSGA-Ⅱalgorithm combined with BIM5D to solve the time cost optimization problem can effectively optimize the schedule and cost targets.
作者 王绪民 王琪 WANG Xumin;WANG Qi(School of Civil Engin.,Architecture and Environment,Hubei Univ.of Tech,Wuhan 430068,China)
出处 《湖北工业大学学报》 2021年第2期81-85,共5页 Journal of Hubei University of Technology
基金 湖北工业大学博士启动基金(BSQD14040)。
关键词 工期-成本优化 改进NSGA-Ⅱ算法 BIM5D time cost optimization improved NSGAⅡalgorithm BIM5D
  • 相关文献

参考文献3

二级参考文献21

  • 1熊鹰,匡亚萍.基于蚁群算法的施工项目工期-成本优化[J].系统工程理论与实践,2007,27(3):105-111. 被引量:29
  • 2FENG Chung-wei, LIU Liang, BURNS Scott A. Using genetic algorithms to solve construction time-cost trade-off problems [J].Journal of Computing in Civil Engineering, 1997,11(3):184-189.
  • 3LI Heng, LOVE Peter. Using improved genetic algorithms to facilitate time-cost optimization [J].Journal of Con- struction Engineering and Management, 1997,123 (3) : 233-237.
  • 4LI Heng, Cao J, /rOVE Peter. Using machine learning and genetic algorithm to solve time-cost trade-off problems[J]. Journal of Construction Engineering and Management, 1999,125(5):347-353.
  • 5LEU Sou-sen, CHEN An-Ting, YANG Chung-huei. A GA-based fuzzy optimal model for construction time-cost trade-off [J]. International Journal of Project Management, 2001 (19) : 47-58.
  • 6ZHENG D X M, Ng S T, KUMARASWAMY, M M. Applying a genetic algorithm-based multi-objective approach for time-cost optimization [J]. Journal of Construction Engineering and Management, 2004, 130(2):168-176.
  • 7ZHENG D X M, Ng S T. Stochastic time-cost optimization model incorporating fuzzy sets theory and non replace- able front[J]. Journal of Construction Engineering and Management, 2005, 131(2) :176-186.
  • 8ELBELTAGI Emad, HEGAZYB Tarek, GRIERSON Donald. Comparison among five evolutionarybased optimiza- tion algorithms [J]. Advanced Engineering Informatics, 2005 (19) : 43-53.
  • 9YANG I T. Using elitist particle swarm optimization to facilitate bi criterion time-cost trade off analysis[J].Jour- nal of Construction Engineering and Management, 2007, 133(7):498-505.
  • 10ZONG Woo Geem. Multi objective Optimization of Time-Cost Trade-Off Using Harmony Search [J]. Journal of Construction Engineering and Management, 2010, 136(6) : 711- 716.

共引文献27

同被引文献35

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部