期刊文献+

基于信息增益优化支持向量机模型的煤矿瓦斯爆炸风险预测 被引量:6

Risk Prediction of Coal Mine Gas Explosion Based on Information Gain-Support Vector Machine(IG-SVM)Model
下载PDF
导出
摘要 为了探索基于样本数据的煤矿瓦斯爆炸风险预测,依据本质安全理念构建了预测瓦斯爆炸风险的指标集,结合机器学习与特征优化算法提出了信息增益(information gain, IG)与支持向量机(support vector machine, SVM)的组合模型,通过对优化后的14种特征信息的分类学习,完成对风险未知样本的预测任务。以全国100家煤矿企业为研究对象,使用不同模型分别预测瓦斯爆炸风险并全面分析和比较,实验结果表明,经过IG优化后的SVM模型预测正确率达到了95.45%,相对于单一SVM模型提高了9.09%,同时高于其他预测模型,证明了该组合模型在瓦斯爆炸风险预测领域的优越性。 In order to explore the risk prediction of coal mine gas explosion based on the sample data,an index set for predicting gas explosion risk based on intrinsic safety concept was established.A combined model of information gain(IG)support vector machine(SVM)combined with machine learning and feature optimization algorithm was proposed,the prediction task of unknown risk samples was completed through the classification learning of 14 optimized feature information.100 coal mining companies across the country were selected as the research objects.Different models were used to predict the risk of gas explosion,and then comprehensively analyzed and compared.The experimental results show that the accuracy of SVM model after IG optimization reaches 95.45%.Compared with the single SVM model,it increases by 9.09%,higher than other prediction models.It proves the superiority of the combined model in the field of gas explosion risk prediction.
作者 万宇 齐金平 张儒 闫森 WAN Yu;QI Jin-ping;ZHANG Ru;YAN Sen(Mechatronics T&R Institute,Lanzhou Jiaotong University,Lanzhou 730070,China)
出处 《科学技术与工程》 北大核心 2021年第9期3544-3549,共6页 Science Technology and Engineering
基金 国家自然科学基金(71861021) 甘肃省高等学校科研项目(2018A-026) 甘肃省重点研发项目(17YF1FA122)。
关键词 瓦斯爆炸风险 本质安全 支持向量机 信息增益 gas explosion risk intrinsic safety support vector machine(SVM) information gain(IG)
  • 相关文献

参考文献7

二级参考文献59

  • 1徐凤亚,罗振声.文本自动分类中特征权重算法的改进研究[J].计算机工程与应用,2005,41(1):181-184. 被引量:56
  • 2高雷,王升.财务风险预警的功效系数法实例研究[J].南京财经大学学报,2005(1):93-97. 被引量:19
  • 3Salton G,Wong A,Yang C S.A vector space model for automatic indexing[J].Communieation of the ACM,1975,18:613-620.
  • 4Yang Y,Pederson J O.A comparative study on feature selection in text categorization[C]//Proceedings of the 14th Intemational Conference on Machine lenming(ICM1'97).Nashville:Morgan Kaufmann Publishers,1997:412-420.
  • 5Yang Y,liu X.A re-examination of text categorization methods[C]//The 22nd Annual Int'l ACM SIGIR Conf on Research and Development in Information Retrieval.New York:ACM Press,1999.
  • 6Zhang H.The optimality of naive Bayes[C]//The 17th Int'l FLAIRS Conference,Miami Beach,2004.
  • 7田水承.[D].北京: 理工大学,2001.
  • 8王玉振 周文安.矿井掘进面安全评价的灰色聚类方法[M].北京:中国管理科学,1996..
  • 9Cheng W, Zhang A Y, Zhou G, Neural network model of preliminary hazard assessment on gas explosion[J]. Theory and Practice of Energetic Materials, 2003, 5: 905-910.
  • 10杨允信.文本文件自动分类之研究[C]// 台湾地区第六届计算语言学研讨会论文集.台湾:[s.n.],1993.

共引文献215

同被引文献45

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部