期刊文献+

一种基于分块压缩感知的红外成像方法 被引量:1

An Method of Infrared Imaging Based on Block Compressed Sensing
下载PDF
导出
摘要 在红外成像系统中,红外探测器的阵列大小和像元尺寸决定了红外图像的分辨率。由于红外探测器的制作工艺问题,很难通过增大阵列大小或减小像元尺寸的方式来提升红外图像分辨率。为了解决上述问题,将分块压缩感知理论应用到红外成像系统之中,编码模板位于前置红外镜头的像面,并对目标场景所成的像进行多次编码。编码后的像经过中继红外镜头被红外探测器所采集,采用OMP算法对采集到的信号以分块的方式进行重构,最终得到目标场景图像。对不同分块大小重构原始图像进行仿真,并将仿真的重构图像与降采样图像进行对比分析。仿真结果表明,分块大小越大,重构图像的峰值信噪比越高,重构时间越长。重构图像的质量明显优于降采样图像,可以实现低分辨率红外探测器重构高分辨率图像,为提高红外图像分辨率提供了新的方向。 In the infrared imaging system,the array size and pixel size of the infrared detector determine the resolution of the infrared image.Due to the manufacturing process of the infrared detector,it is difficult to increase the resolution of the infrared image by increasing the size of the array or reducing the size of the pixel.In order to solve the above problems,the block-compressed sensing theory is applied to the infrared imaging system.The coding template is located on the image plane of the front infrared lens,and the image formed by the target scene is coded many times.The encoded image is collected by an infrared detector through a relay infrared lens,and the collected signal is reconstructed in blocks using the OMP algorithm,and finally the target scene image is obtained.The original image reconstructed with different block sizes is simulated,and the simulated reconstructed image is compared with the down-sampled image.The simulation results show that the larger the block size,the higher the peak signal-to-noise ratio of the reconstructed image and the longer the reconstruction time.The quality of the reconstructed image is obviously better than that of the down-sam pled image,which can realize the reconstruction of high-resolution images with low-resolution infrared detectors,which provides a new direction for improving the resolution of infrared images.
作者 刘晓宇 于洵 丁良华 韩峰 龚昌妹 Liu Xiaoyu;Yu Xun;Ding Lianghua;Han Feng;Gong Changmei(School of Optoelectronic Engineering,Xi an Technological University,Xi an 710021,China;School of Ordnance Science and Technology,Xi an Technological University,Xi an 710021,China;Product Research Institute of Technology Center of Inner Mongolia North Heavy Industry Group Co.,Ltd.,Baotou 014033,China)
出处 《粘接》 CAS 2021年第4期77-81,共5页 Adhesion
关键词 压缩感知 分块重构 红外成像 像平面编码 compressed sensing block reconstruction infrared imaging image plane coding
  • 相关文献

参考文献2

二级参考文献23

  • 1Lustig M, Donoho D, Pauly J M. Sparse MRI: the application of compressed sensing for rapid MR imaging [J]. Magnetic Resonance in Medicine, 2007, 58(6): 1182-1195.
  • 2Bobin J, Starck J L, Ottensamer R. Compressed sensing in astronomy [J]. 1gEE Journal of Selected Topics in Signal Processing, 2009, 28(2): 609-618.
  • 3Ma J. Single-pixel remote sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(2): 199-203.
  • 4Duarte M F, Davenport M A, Takhar D, et al. Single-pixel imaging via compressive sampling [J]. IEEE Signal Processing Magazine, 2008, 25(2): 83-91.
  • 5Candes E J. The restricted isometry property and its implications for compressed sensing [J]. Academic des Sciences, 2006, 346(1): 598-592.
  • 6Baraniuk R. A lecture on Compressive sensing [J]. IEEE Signal Processing Magazine, 2007, 24(4): 1i8-121.
  • 7Candes E, Tao T. Decoding by linear programming [J]. IEEE Transaction On Information Theory, 2005, 51 (12): 4203-4215.
  • 8Candes E, Romberg J, Tao T. Stable signal recovery from incomplete and inaccurate measurements [J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223.
  • 9Bajwa W, Haupt J, Raz G, et al. Toeplitz-structured compressed sensing matrices [C]// Proceedings oL the IEEE Workshop on Statistical Signal Processing, 2007: 294-298.
  • 10Donoho D L. For most large underdetermined systems of linear equations, the minimal L1 norm solution is also the sparsest solution [J]. Communications on Pure and Applied Mathematics, 2006, 59(6): 797-829.

共引文献31

同被引文献7

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部