期刊文献+

基于放电声音识别的高压电器绝缘监测研究 被引量:4

High Voltage Apparatus Insulation Monitoring Based on Discharge Acoustic Signal Recognition
下载PDF
导出
摘要 为了监测开关设备耐压试验过程绝缘状态情况,提取试验过程中异常声音信号的语谱图,导入卷积神经网络识别有无放电信号,并基于得到的准确率优化网络模型。使用卷积神经网络能自动提取输入图像特征,建立相应的识别判据,并且能较大提高识别准确率。试验结果表明,卷积神经网络能较好地完成识别任务,平均识别准确率能达到94%以上。 In order to monitor the insulation state of switchgear in the withstand voltage test,the spectrogram of abnormal acoustic signal during the test was extracted.The convolutional neural network was imported to recognize whether there was a discharge signal,and the network model was optimized based on the obtained accuracy.The use of convolutional neural network could automatically extract the input image features,establish the corresponding recognition criteria,and greatly improve the recognition accuracy.The experimental results show that the convolutional neural network can complete the recognition task well,and the average recognition accuracy can reach more than 94%.
作者 马文婧 郑欣 鲍克磊 张伟欣 Ma Wenjing;Zheng Xin;Bao Kelei;Zhang Weixing(Guangzhou Power Supply Bureau, Guangdong Power Grid Company, Guangzhou Guangdong 511400, China)
出处 《电气自动化》 2021年第2期24-26,共3页 Electrical Automation
基金 中国南方电网有限责任公司科技项目(GZHKJXM20170135)。
关键词 高压电器 卷积神经网络 在线监测 放电信号识别 语谱图 high voltage apparatus convolutional neural network online monitoring discharge signal recognition spectrogram
  • 引文网络
  • 相关文献

参考文献11

二级参考文献160

  • 1李延沐,袁鹏,牟磊,李彦明.基于自适应神经模糊推理系统(ANFIS)的变压器超高频局部放电模式识别[J].电工电能新技术,2005,24(4):30-33. 被引量:4
  • 2王梦云.2004年度110kV及以上变压器事故统计分析[J].电力设备,2005,6(11):31-37. 被引量:62
  • 3张玲华,郑宝玉,杨震.基于LPC分析的语音特征参数研究及其在说话人识别中的应用[J].南京邮电学院学报(自然科学版),2005,25(6):1-6. 被引量:13
  • 4邱凌.小波变换在局放信号分析的应用[M].武汉水利电力大学,1999..
  • 5McDonald J,Moyes A.Intelligent plant monitoring in power engineering[C].IEE Colloquium,1999,Digest No:1999/065.
  • 6ZAJDEL W, KRIJNDERS J D, ANDRNGA T. Audio-video sensor fusion for aggression detection [ A ]. Proceedings of the 2007 IEEE International Conference on Advanced Video and Signal based Surveillance [ C ]. London:IEEE Computer Society,2007.
  • 7LEE C H, CHOU C H, HAN C C. Automatic recognition of animal vocalizations using averaged MFCC and linear discriminant analysis [ J ]. Pattern Recognition Letters, 2006,27 ( 2 ) : 93-101.
  • 8WANG J C,WANG J F,WANG Y S. Chip design of MFCC extraction for speech recognition [JJ. Integration,2002,32 (1/2) :111 -131.
  • 9RABAOU I A,DAVY M, ROSSIGNOL S. Using one-class SVMs and wavelets for audio surveillance [ J ]. IEEE Transactions on Information Forensics and Security, 2008,3 (4) : 763-775.
  • 10RABAOU I, LACHIR I Z, ELLOUZE N. Using HMM-based classifier adapted to background noises with improved sounds features for audio surveillance application [J]. International Journal of Signal Processing,2008,5 (1) :46-55.

共引文献852

同被引文献59

引证文献4

二级引证文献10

;
使用帮助 返回顶部