期刊文献+

Quantile Regression for Thinning-based INAR(1)Models of Time Series of Counts

原文传递
导出
摘要 In this paper,we develop the quantile regression(QR)estimation for the first-order integer-valued autoregressive(INAR(1))models by defining the smoothing INAR(1)process.Jittering method is used to derive the QR estimators for the autoregressive coefficient and the quantile of innovations.The consistency and asymptotic normality of the proposed estimators are established.The performances of the proposed estimation procedures are evaluated by Monte Carlo simulations.The results show that the proposed procedures perform well for simulations and a real data application.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2021年第2期264-277,共14页 应用数学学报(英文版)
基金 supported by National Natural Science Foundation of China(No.11871028,11731015,12001229,11901053) Natural Science Foundation of Jilin Province(No.20180101216JC)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部