期刊文献+

Continuous Forcing Spectra of Even Polygonal Chains

原文传递
导出
摘要 Let G be a graph that admits a perfect matching M.A forcing set S for a perfect matching M is a subset of M such that it is contained in no other perfect matchings of G.The cardinality of a forcing set of M with the smallest size is called the forcing number of M,denoted by f(G,M).The forcing spectrum of G is defined as:Spec(G)={f(G,M)|M is a perfect matching of G}.In this paper,by applying the Ztransformation graph(resonance graph)we show that for any polyomino with perfect matchings and any even polygonal chain,their forcing spectra are integral intervals.Further we obtain some sharp bounds on maximum and minimum forcing numbers of hexagonal chains with given number of kinks.Forcing spectra of two extremal chains are determined.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2021年第2期337-347,共11页 应用数学学报(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.11871256,11371180,11226286)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部