期刊文献+

极大线性无关组的计算复杂度

Computational Complexity of the Maximally Linear Independent Sets
下载PDF
导出
摘要 在求线性规划和优化控制等问题中,尤其是在计算数学以及统计计算等方面,选择方法之前核算好计算复杂度,对节省成本损耗等具有重要意义.文章以矩阵求秩的方法为例,对求解极大线性无关组个数的方法进行了比较和总结,并推荐使用初等变换方法. For solving linear programming and optimal control,especially in calculation mathematics and statistics,checking the complexities of calculation before selecting a method,which is a great significance for saving costs and so on.Taking the matrix ranking as an example,this paper compares and summarizes the methods for solving the number of the maximal linearly independent sets,and recommends the elementary transformation method.
作者 魏其萍 王跃 柳彬 WEI Qiping;WANG Yue;LIU Bin(School of Data Science and Infor mation Engineering,Guizhou Minzu University,Guiyang 550025,China;School of Mathematics and Stalistics,Guizhou University,Guijyang 550025,China)
出处 《广西民族大学学报(自然科学版)》 CAS 2020年第4期62-66,共5页 Journal of Guangxi Minzu University :Natural Science Edition
基金 贵州省研究生科研基金立项项目(黔教合YJSCXJH[2020]083) 国家自然科学基金项目(11661021) 贵州省科技厅科研项目(黔科合LH字[2014]7378) 贵州省教育厅科研项目(黔教合KY字[2018]141,黔教合KY字[2018]415).
关键词 极大线性无关组 计算复杂度 矩阵求秩 初等变换 maximal linearly independent sets complexities for computation matrix ranking transformation method
  • 相关文献

参考文献5

二级参考文献34

  • 1刘金旺,夏学文.线性代数[M].上海:复旦大学出版社,2007:60.
  • 2郭文彬,魏木生.奇异值分解及其在广义逆理论中的应用[M].北京:科学出版社,2008:14-15.
  • 3Marsaglia G, Styan G. Equalities and inequalities for ranks of matrices[J]. Linear and Multilinear Algebra, 1974,2: 269-292.
  • 4Meyer C D. Generalized inverses and ranks of a block matrices[J]. SIAMAppl Math,1973,25: 597-602.
  • 5Tian Y. The minimal and maximal ranks of some expressions of generalized inverses of matrices[J]. Southeast Asian Bull Math,2002, 25 : 745-755.
  • 6Tian Y. More on minimal and maximal ranks of Schur complements with applications[J]. Southeast Asian Bull Math,2004,152:675-692.
  • 7Tian Y. More on rank equalities for outer inverses of matrices with applications[J]. Int Math Game Theory Algebra,2002,12:137 - 151.
  • 8Tian Y, Hui Y H. Extremal ranks of some symmetric matrix expression with applications[J]. SIAM J Matrix Anal Appl,2006,28(3) : 890-905.
  • 9TIAN Y’STYAN G P H. Rank equalities for idempotent matrices with applications[J]. Journal of Computational and AppliedMathematics, 2006,191:7-97.
  • 10GROfi J ,TRENKLER G. Nonsingularity of the difference of two oblique projectors[J]. SIAM J Matrix Anal Appl, 2000, 21 :390-395.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部