期刊文献+

柔性作业车间调度的精确邻域结构混合进化算法 被引量:11

Evolutionary Algorithm with Precise Neighborhood Structure for Flexible Workshop Scheduling
下载PDF
导出
摘要 为解决现有基于关键路径的邻域搜索存在无效移动多、盲目性大以及仅优化单一目标的问题,设计了更加明确精准有效的邻域结构,包括同机器移动和跨机器移动两步操作;在此基础上,给出相应的关键工序精确移动条件,并将其从优化最大完工时间推广到多目标优化;为兼顾算法局部搜索和全局搜索,将其与进化算法进行混合,实现局部与全局的优势互补,并给出相应的混合算法框架;最后,通过两个国际通用的案例集进行测试,并将测试结果与成熟的算法进行对比,验证了所设计算法的有效性和高效性。 In order to solve the problems of the existing neighborhood search based on critical path,such as too many invalid moves,too much blindness and optimization one objective,a more precise and effective neighborhood structure is designed,including the twostep operation of the same machine movement and the cross-machine movement.Based on which,the corresponding operation movement conditions are given and extended from the optimization of the maximum completion time to multi-objective optimization.Besides,to realize the complementary advantages of local and global search,the algorithm is mixed with the evolutionary algorithm,and the corresponding hybrid algorithm framework is given.Moreover,two internationally used case sets are tested,and the test results are compared with those of other algorithms to verify the effectiveness and efficiency of the proposed algorithm.
作者 王家海 李营力 刘铮玮 刘江山 WANG Jiahai;LI Yingli;LIU Zhengwei;LIU Jiangshan(School of Mechanical Engineering,Tongji University,Shanghai 201804,China)
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第3期440-448,共9页 Journal of Tongji University:Natural Science
基金 国家重点研发计划(2017YFE0101400)。
关键词 多目标优化 车间调度 邻域搜索 进化算法 multi-objective optimization workshop scheduling neighborhood search evolutionary algorithm
  • 相关文献

参考文献5

二级参考文献46

  • 1张超勇,饶运清,刘向军,李培根.基于POX交叉的遗传算法求解Job-Shop调度问题[J].中国机械工程,2004,15(23):2149-2153. 被引量:115
  • 2王磊,黄文奇.求解工件车间调度问题的一种新的邻域搜索算法[J].计算机学报,2005,28(5):809-816. 被引量:20
  • 3MASTROLILLI M, GAMBARDELLA L M. Effective neighborhood functions for the flexible job shop problem[J]. Journal of Scheduling, 20007 3(1): 3-20.
  • 4WANG L, WANG S Y, XU Y, et al. A bi-population based estimation of distribution algorithm for the flexible job-shop scheduling problem[J]. Computers & Industrial Engineering, 2012, 62(4): 917-926.
  • 5WANG L, ZHOU G, XU Y, et al. An effective artificial bee colony algorithm for the flexible job-shop scheduling problem[J]. International Journal of Advanced Manufacturing Technology, 2012, 60(1-4): 303-315.
  • 6YUAN Y, XU H, YANG J D. A hybrid harmony search algorithm for the flexible job shop scheduling problem[J] Applied Soft Computing, 2013, 13(7): 3259-3272.
  • 7GAO J, SUN L Y, GEN M. A hybrid genetic and variable neighborhood descent algorithm for flexible job shop scheduling problems[J]. Computers & Operations Research, 2008, 35(9): 2892-2907.
  • 8YUAN Y, XU H. Flexible job shop scheduling using hybrid differential evolution algorithms[J]. Computers & Industrial Engineering, 2013, 65(2): 246-260.
  • 9GAO J, GEN M, SUN L Y, et al. A hybrid of genetic algorithm and bottleneck shifting for multiobjective flexible job shop scheduling problems[J]. Computers & Industrial Engineering, 2007, 53(1): 149-162.
  • 10NOWICKI E, SMUTNICKI C. A fast taboo search algorithm for the job shop problem[J]. Management Science, 1996, 42(6): 797-813.

共引文献90

同被引文献92

引证文献11

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部