期刊文献+

基于变速趋近律的Buck型变换器抗扰动控制 被引量:12

Disturbance rejection control of Buck converters based on variable rate reaching law
原文传递
导出
摘要 针对带有输入电压波动、输出负载突变以及电感电容参数摄动等匹配和非匹配扰动的Buck型变换器系统,提出一种基于变速趋近律和扰动观测器的抗扰动控制方法.设计反余切型辅助函数构造变速趋近律,通过改变系统状态的收敛速度,保证系统具有较快的瞬态响应速度和较小的控制器抖振.通过对系统模型进行低通滤波,设计一种新型扰动观测器估计系统匹配和非匹配扰动.该观测器只包含一个设计参数,且无需对系统状态量求导,可以避免因求导带来的系统噪声放大问题.最后,基于李雅普诺夫稳定性理论给出观测误差和输出电压误差的收敛性分析,并通过仿真和实验对比验证所提方法的有效性. A disturbance rejection control scheme based on variable rate reaching law is proposed for Buck converters with matched and mismatched disturbances including input voltage variations, output load mutations, inductance and capacitance perturbations. The variable rate reaching law is constructed by designing an arc cotangent function, such that the convergence rate of the system states is changed to guarantee the fast transient response speed and reduce the controller chattering. By low-pass filtering the system model, a novel disturbance observer is designed to estimate the matched and mismatched disturbances. The developed disturbance observer includes only one design parameter, and the differentiation of the system states is not needed in the disturbance observer, such that the noise amplification problem resulted from the differentiation can be avoided. Finally, the convergence analysis of the observation error and output voltage error is provided based on Lyapunov stability synthesis. Comparative simulations and experiments validate the effectiveness of the proposed scheme.
作者 陈强 杨晨冰 南余荣 CHEN Qiang;YANG Chen-bing;NAN Yu-rong(College of Information Engineering,Zhejiang University of Technology,Hangzhou 310023,China)
出处 《控制与决策》 EI CSCD 北大核心 2021年第4期893-900,共8页 Control and Decision
基金 国家自然科学基金项目(61973274) 浙江省自然科学基金项目(LY17F030018)。
关键词 变速趋近律 扰动观测器 BUCK型变换器 非匹配扰动 variable rate reaching law disturbance observer Buck converters mismatched disturbances
  • 相关文献

参考文献4

二级参考文献26

  • 1李世华,丁世宏,田玉平.一类二阶非线性系统的有限时间状态反馈镇定方法[J].自动化学报,2007,33(1):101-104. 被引量:52
  • 2Slotine J J E, Li W. Applied nonlinear control[M]. NJ: Prentice-Hall Englewood Cliffs, 1991: 290-301.
  • 3Levant A. Universal single-input-single-output(SISO) sliding-mode controllers with finite-time convergence[J]. IEEE Trans on Automatic Control, 2001, 46(9): 1447-1451.
  • 4Laghrouche S, Plestan F, Glumineau A. Higher order sliding mode control based on integral sliding mode[J]. Automatica, 2007, 43(3): 531-537.
  • 5Defoort M, Floquet T, Kokosy A, et al. A novel higher order sliding mode control scheme[J]. Systems & Control Letters, 2009, 58(2): 102-108.
  • 6Siraramirez H. On the dynamic sliding mode control of nonlinear systems[J]. Int J of Control, 1993, 57(5): 1039-1061.
  • 7Yu S H, Yu X H, Shirinzadeh B, et al. Continuous finite-time control for robotic manipulators with terminal sliding mode[J]. Automatica, 2005, 41(11): 1957-1964.
  • 8Polyakov A. Nonlinear feedback design for fixed-time stabilization of linear control systems[J]. IEEE Trans on Automatic Control, 2012, 57(8): 2106-2110.
  • 9Polyakov A, Fridman L. Stability notions and Lyapunov functions for sliding mode control systems[J]. J of the Franklin Institute-Engineering and Applied Mathematics, 2014, 351(4): 1831-1865.
  • 10Yang L, Yang J Y. Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems[J]. Int J of Robust and Nonlinear Control, 2011, 21(16): 1865-1879.

共引文献118

同被引文献68

引证文献12

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部