期刊文献+

基于L2,1范数和流形正则项的半监督谱聚类算法 被引量:6

Semi-supervised spectral clustering algorithm based on L norm and manifold regularization terms
原文传递
导出
摘要 谱聚类算法受到相似矩阵的影响以及没有使用先验信息,使得聚类结果有很大的局限性。针对这一问题,提出了一种基于L2,1范数和流形正则项的半监督谱聚类算法。一方面借助L2,1范数的鲁棒性学习到合理的相似矩阵;另一方面充分利用监督信息,不仅指导了初始相似矩阵的构造,而且引入流形正则项去调整模型,从而改善聚类效果。实验结果表明,所提出的聚类算法在人工数据集和真实数据集上的聚类结果较其他聚类算法更加有效。 The spectral clustering algorithm is affected by the similarity matrix and not using prior information, which makes the clustering results with great limitations. For this problem, we propose a semi-supervised spectral clustering algorithm based on L2,1 norm and manifold regularization terms. With the help of robustness in L2,1 norms, a reasonable similarity matrix is learned. In addition, full use of supervisory information not only is added in the initial similarity matrix, but also is used in manifold regularization term to adjust the model, thereby improving the clustering effect. The clustering results of the proposed clustering algorithm on artificial data sets and real data sets are more effective than other clustering algorithms in most cases.
作者 杨婷 朱恒东 马盈仓 汪义瑞 杨小飞 YANG Ting;ZHU Heng-dong;MA Ying-cang;WANG Yi-rui;YANG Xiao-fei(School of Science,XPan Polytechnic University,Xi'an 710600,Shaanxi,China;School of Mathematics and Statistics,Ankang University,Ankang 725000,Shaanxi,China)
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2021年第3期67-76,共10页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(11501435) 西安工程大学研究生创新基金资助项目(chx2020031) 安康学院专项基金资助(2019AYXNZX04)。
关键词 L2 1范数 流形正则项 谱聚类 半监督学习 L2 1 norm manifold regularization term spectral clustering semi-supervised learning
  • 相关文献

参考文献6

二级参考文献35

  • 1何振峰,熊范纶.结合限制的分隔模型及K-Means算法[J].软件学报,2005,16(5):799-809. 被引量:23
  • 2王玲,薄列峰,焦李成.密度敏感的半监督谱聚类[J].软件学报,2007,18(10):2412-2422. 被引量:95
  • 3WU Z, LEAHY R. An optimal graph theoretic approach to data clustering: theory and its application to image segmentationEJ~. IEEE Trans on PAMI,1993,15(ll):1101-1113.
  • 4SHI J, MALIK J. Normalized cuts and image segmentation[-J~. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(8) :888-905.
  • 5HAGEN L,KAHNG A B. New spectral methods for ratio cut par- titioning and clustering EJ~. Computer-Aided Design, 1992,11 ( 9 ) .. 1074-1085.
  • 6SARKAR S, SOUNDARARAJAN P. Supervised learning of large perceptual organization: Graph spectral partitioning and learning automataEJ~. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2000,22 (5) : 504-525.
  • 7DING C,HE X,ZHA H,et al. Spectral min-max cut for graph par- titioning and data clusteringEC~. Proc. of the IEEE Intl Conf. on Data Mining. 2001 ~ 107-114o.
  • 8MEILA M, XU L. Multiway cuts and spectral clusteringEZ~. Uni- versity o[ Washington Technical Report, 2003 : 442-447.
  • 9DRAKE A,VENTURA D. An empirical comparison of spectral learning methods for elassification[-C3. Proceedings of the 12th In- ternational Conference on Machine Learning and Applications, IEEE,2013(1) :9-14.
  • 10蔡晓妍,戴冠中,杨黎斌.谱聚类算法综述[J].计算机科学,2008,35(7):14-18. 被引量:189

共引文献42

同被引文献82

引证文献6

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部