期刊文献+

综合ICU患者获得性衰弱风险预测模型的构建与应用 被引量:12

Establishment and application of a risk prediction model for ICU acquired weakness
原文传递
导出
摘要 目的通过分析综合ICU患者获得性衰弱的危险因素,构建风险预测模型,并验证模型的应用效果。方法选取2018年11月至2019年10月在江苏大学附属医院综合ICU治疗的247例患者,将其分为ICU获得性衰弱组(n=106)和非ICU获得性衰弱组(n=141),将2组的各项指标进行对比并应用二元Logistic回归构建预测模型,采用H-L判断模型的拟合度,采用ROC曲线下面积检验模型预测效果。于2019年11月至2020年5月纳入106例患者作为验证组对模型进行临床应用效果的验证。结果本研究建模组ICU获得性衰弱发生率为42.91%(106/247),验证组为44.34%(47/106),最终纳入年龄(OR=1.043)、机械通气时间(OR=1.140)、急性生理学与慢性健康状况评分表(APACHEⅡ)评分(OR=1.081)、血糖(OR=1.117)、乳酸(OR=1.459)、神经阻滞剂(OR=3.499)6个变量构建出风险预测模型。预测模型的公式为P=1/1+exp(-Z)=1/1+exp(8.808-0.042×年龄-1.252×神经阻滞剂的赋值-0.078×APACHEⅡ评分-0.110×血糖-0.378×血乳酸-0.131×机械通气时间),本预测模型ROC曲线下面积为0.896(95%CI 0.824~0.914),最大约登指数为0.577,灵敏度为0.754,特异度为0.823,截段值为0.503。模型验证结果:AUC=0.880,灵敏度为70.2%,特异度为88.1%,准确率为80.2%。结论本研究构建的ICU获得性衰弱风险预测模型具有较好的预测效果,可为临床筛选ICU获得性衰弱高危患者提供参考。 Objective To analyze the risk factors of Intensive Care Unit-Acquired Weakness,and to develop and verify the model.Methods A total of 247 patients admitted to ICU patients from November 2018 to October 2019 were selected,and risk factors between ICU acquired weakness group(n=106)and non-ICU acquired weakness group(n=141)were compared using logistic regression for model construction.The Hosmer-Lemeshow test was used to verify the goodness of fit of the model.The area under the ROC curve was used to test the model to predict the effects.From November 2019 to May 2020,106 patients were recruited for application of the model.Results The incidence of ICU acquired weakness in this study was 42.91%(106/247),and 44.34%(47/106),the study finally included age(OR=1.043),mechanical ventilation time(OR=1.140),APACHE II score(OR=1.081),blood sugar(OR=1.117),lactic acid(OR=1.459),and neuromuscular blockers(OR=3.499)to construct the risk prediction.The model formula was P=1/1+exp(-Z)=1/1+exp(8.808-0.042×age-1.252×neuromuscular blockers-0.078×APACHE II score-0.110×blood sugar-0.378×lactic acid-0.131×mechanical ventilation time.The area under the ROC curve of this model was 0.896(95%CI:0.824-0.914),the maximum value of the Youden index was 0.577,and the corresponding sensitivity was 0.754,the specificity was 0.823,the cutoff value was 0.503.The model verification results the sensibility of 70.2%,the specificity of 88.1%,and the accuracy of 80.2%.Conclusion The predictic model of ICU acquired weakness couducted in this study has satisfactory prediction effect,which can provide a reference for clinical screening of high-risk patients.
作者 江竹月 邹圣强 胡佳民 陈丽 姚雅极 严孝馨 刘津含 Jiang Zhuyue;Zou Shengqiang;Hu Jiaming;Chen Li;Yao Yaji;Yan Xiaoxin;Liu Jinhan(Nursing Department of the Third Hospital of Zhenjiang,Affiliated to Jiangsu University,Zhenjiang 212005,China;President′s Office of the Third Hospital of Zhenjiang,Affiliated to Jiangsu University,Zhenjiang 212005,China;Nursing College of Jiangsu University,Zhenjiang 212005,China;Clinic Medical College of Jiangsu University,Zhenjiang 212005,China)
出处 《中国实用护理杂志》 2021年第11期807-812,共6页 Chinese Journal of Practical Nursing
基金 中国肝炎防治基金会-王宝恩肝纤维化研究基金资助项目(WBEXJS2018001) 镇江市重点研发计划社会发展项目(SH2018028)。
关键词 重症监护室 ICU获得性衰弱 高危人群 预测模型 风险评估 Intensive care units ICU acquired weakness High risk population Prediction model Risk assessment
  • 相关文献

参考文献6

二级参考文献63

  • 1王杭,王国民,孙立安,朱彪.后腹腔镜手术与腹腔镜手术中机体对CO_2气体吸收的不同[J].复旦学报(医学版),2005,32(5):554-556. 被引量:6
  • 2Parikh NI, Pencina MJ, Wang TJ, et al. A risk score for predictingnear-term incidence of hypertension:the Framingham Heart Study . Ann Intern Med,2008,148(2) :102-110.
  • 3Gall MH, Brinton LA, Byar DP, et al. Projecting individualized prob- abilities of developing breast cancer for white females who are being examined annually . J Natl Cancer Inst, 1989,81 ( 24 ) : 1879 -1886.
  • 4Meigs JB, Shrader P, Sullivan LM, et al. Genotype score in addition to common risk factors for prediction of type 2 diabetes . N Engl J Med,2008,359(21 ) :2208-2219.
  • 5Schnabel RB, Sullivan LM, Levy D, et al. Development of a risk score for atrial fibrillation (Framingham Heart Study) :a community- based cohort study. Lancet,2009,373 (9665) :739-745.
  • 6Hanley JA,Mcneil BJ. The meaning and use of the area under a re- ceiver operating characteristic ( ROC ) curve . Radiology, 1982,143 ( 1 ) :29-36.
  • 7Hosmer DW, Hosmer T, Le Cessie S, et al. A comparison of good- ness-of-fit tests for the logistic regression model. Stat Med, 1997,16 (9) :965-980.
  • 8Hanley JA, Mcneil BJ. A method of comparing the areas under re- ceiver operating characteristic curves derived from the same cases . Radiology, 1983,148 (3) :839-843.
  • 9Pepe MS,Janes H,Longton G,et al. Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker. Am J Epidemio1,2004,159 (9) :882-890.
  • 10Cook NR. Use and misuse of the receiver operating characteristic curve in risk prediction. Circulation ,2007,115 (7) :928-935.

共引文献183

同被引文献134

引证文献12

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部