摘要
目的系统评价MR弥散加权成像(DWI)鉴别诊断卵巢良恶性肿瘤的价值。方法检索PubMed、Embase、Cochrane Library、CBM、中国知网、万方医学网、维普数据库,检索时间自建库至2019年10月31日,获取DWI鉴别诊断卵巢良恶性肿瘤研究,以QUADAS-2量表评估文献质量。采用Review Manager 5.2双变量模型及Meta-Disc l.4软件进行Meta分析,最终结果以合并敏感度、特异度、阳性似然比(PLR)、阴性似然比(NLR)及其95%CI表示。采用综合受试者工作特征(SROC)曲线计算曲线下面积(AUC)。结果依据纳入及排除标准,最终选取11篇文献,包括313例良性肿瘤和587例恶性肿瘤。Meta分析结果显示,DWI鉴别诊断卵巢良恶性肿瘤的合并敏感度和特异度分别为0.86[95%CI(0.82,0.90)]和0.83[95%CI(0.80,0.86)],合并PLR和NLR为4.93[95%CI(3.01,8.08)]和0.19[95%CI(0.10,0.39)]。SROC曲线的AUC为0.9093(P=0.433),未检测到阈值效应。结论MR DWI对卵巢癌良恶性肿瘤具有较好的鉴别诊断能力。
Objective To systematically evaluate the differential diagnostic value of MR diffusion weighted imaging(DWI)for benign and malignant ovarian tumors.Methods PubMed,Embase,Cochrane Library,CBM,CNKI,Wanfang Med Online and VIP databases were searched systematically to obtain DWI studies of differential diagnosis of benign and malignant ovarian tumors from establishment to October 31,2019.The quality of literature was evaluated using QUADAS-2 scale.Review Manager 5.2 bivariate model and Meta-Disc l.4 software were used for Meta analysis.The final results were shown with pooled sensitivity,specificity,positive likelihood ratio(PLR)and negative likelihood ratio(NLR)with 95%CI.The summary receiver operating characteristic(SROC)curve was drawn,and area under the curve(AUC)was calculated.Results Eleven articles were selected according to the inclusion and exclusion criteria,including 313 benign tumors and 587 malignant tumors.Meta-analysis results showed that the pooled sensitivity and specificity was 0.86(95%CI[0.82,0.90])and 0.83(95%CI[0.80,0.86]),and the pooled PLR and NLR was 4.93(95%CI[3.01,8.08])and 0.19(95%CI[0.10,0.39]),respectively.AUC of SROC curve was 0.9093(P=0.433),and no threshold effect was detected.Conclusion MR DWI had good differential diagnosis ability for ovarian benign and malignant tumors.
作者
朱大林
冯帆
王满侠
彭梅娟
赵丽
杨爱萍
ZHU Dalin;FENG Fan;WANG Manxia;PENG Meijuan;ZHAO Li;YANG Aiping(Medical Imaging Center,Gansu Province Maternal and Child Care Hospital,Lanzhou 730050,China;Reproductive Medicine Center,Gansu Province Maternal and Child Care Hospital,Lanzhou 730050,China;Department of Neurology,Lanzhou University Second Hospital,Lanzhou 730050,China)
出处
《中国介入影像与治疗学》
北大核心
2021年第4期225-229,共5页
Chinese Journal of Interventional Imaging and Therapy
基金
兰州市科技计划项目(2018-3-30)。
关键词
卵巢肿瘤
弥散加权成像
诊断
鉴别
荟萃分析
ovarian neoplasms
diffusion weighted imaging
diagnosis,differential
meta analysis