期刊文献+

基于自适应步长FOA-SVM算法的卡泵故障诊断 被引量:1

Research on Fault Diagnosis of Stuck Pump Based on Adaptive Step Size FOA-SVM Algorithm
下载PDF
导出
摘要 为了提高机采井卡泵故障诊断精度,提出一种基于自适应步长FOA-SVM混合算法模型的机采井卡泵诊断方法。在支持向量机对示功图诊断分类的基础上,引入改进的自适应步长果蝇优化算法(AS_FOA)对SVM的惩罚因子和核函数参数进行寻优,避免人为选择参数的盲目性。为了实现果蝇优化算法的全局与局部寻优能力的平衡,应用自适应步长方法对其进行改进,使果蝇算法能够根据上一代的适应度值和当前迭代次数来自适应改变果蝇个体搜索步长。通过采油厂真实示功图数据进行仿真实验,比较AS_FOA、FOA、GA三种算法在支持向量机参数寻优中的性能。实验结果表明,AS_FOA收敛速度更快,寻优能力更佳。与其他算法相比,AS_FOA-SVM混合算法模型在卡泵故障诊断中准确率更高,泛化能力更强。 In order to improve the fault diagnosis accuracy of stuck pump,a fault diagnosis method based on adaptive step size FOA-SVM hybrid algorithm model is proposed.Based on the classification of indicator diagram diagnosis by support vector machine,an improved adaptive step size drosophila optimization algorithm(AS_FOA)is introduced to optimize the penalty factor and kernel function parameters of SVM,so as to avoid the blindness of artificial selection of parameters.In order to achieve the balance of global and local optimization ability of drosophila optimization algorithm,the adaptive step method is used to improve it,so that the drosophila algorithm can adapt to change the individual search step according to the fitness value of the previous generation and the number of current iterations.Through the simulation experiment of the real indicator diagram data of oil production plant,the performance of AS_FOA,FOA and GA in the parameter optimization of support vector machine is compared.The experiment shows that AS_FOA has faster convergence speed and better optimization ability.Compared with other algorithms,AS_FOA_SVM hybrid algorithm model has higher accuracy and stronger generalization ability in the fault diagnosis of stuck pump.
作者 方涛 刘涛 李龙 FANG Tao;LIU Tao;LI Long(School of Computer and Information Technology,Northeast Petroleum University,Daqing 163318,China)
出处 《计算机技术与发展》 2021年第4期153-157,共5页 Computer Technology and Development
基金 国家自然科学项目(51774090) 黑龙江省自然科学基金项目(F2015020) 黑龙江省教育科研专项引导性创新基金项目(2017YDL-12)。
关键词 果蝇优化算法 自适应步长 支持向量机 示功图 机采井卡泵 故障诊断 drosophila optimization algorithm adaptive step size support vector machine indicator diagram mechanical well stuck pump fault diagnosis
  • 相关文献

参考文献12

二级参考文献97

  • 1王介生,王金城,王伟.基于粒子群算法的PID控制器参数自整定[J].控制与决策,2005,20(1):73-76. 被引量:83
  • 2陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:309
  • 3Vapnik V N. The nature ff statistical learning theory [M]. New York (USA): Springer-Verlag, 1995.
  • 4Cortes C, Vapnik V N. Supporter vector networks [ J ]. Machine Learning, 1995, 20(3) : 273-297.
  • 5Chapelle O, Vapnik V, Bousquet O, et al. Choosing multiple parameters for support vector machines [ J ]. Machine Learning, 2002, 46(1) : 131-159.
  • 6Pan W T. A new fruit fly optimization algorithm: taking the financial distress model as an example [ J ]. Knowledge-Based Systems, 2012, 26(1): 69-74.
  • 7Wen-Tsao Pan.A new fruit fly optimization algorithm:Taking the financial distress model as an example[J].KnowledgeBased Systems.2012.26(Complete):69-74.
  • 8Mantegna R N.Fast,accurate algortihm for numerical simulation of levy stable stochastic process[J].Physical Review E.1992,49:451-458.
  • 9王财胜,孙才新,廖瑞金.变压器色谱监测中的 BPNN 故障诊断法[J].中国电机工程学报,1997,17(5):322-325. 被引量:69
  • 10赵志军,刘正士,谢峰.基于时序分析的齿轮箱故障诊断[J].合肥工业大学学报(自然科学版),2009,32(5):632-635. 被引量:4

共引文献106

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部