期刊文献+

基于深度学习的垃圾分类系统 被引量:4

Garbage classification System Based on Deep Learning
下载PDF
导出
摘要 垃圾分类是近几年提出的概念,各地政府都在大力推行,但解决垃圾分类问题是一个难题,因为各地政府的政策都不一样,加上科普力度低,很多人只能凭借常识来区分垃圾,但面对难以区分的垃圾时并不能正确判断。基于此,笔者针对青岛市垃圾分类政策并结合对居民问卷调查设计了一款垃圾分类系统。在常用CNN模型中,inception-v3模型与其他模型相比具有更高的精度,实验表明基于inception-v3的垃圾分类模型准确率在90%以上,能够在一定程度上解决垃圾分类困难的问题。 Garbage classification is a concept that has been put forward in recent years. Local governments have been vigorously promoting it, but solving the problem of garbage classification is a difficult problem. Because the policies of local governments are different, and the intensity of science popularization is low, many people can only distinguish garbage based on common sense., But can’t judge correctly when faced with indistinguishable garbage. Based on this, the author designed a garbage classification system based on Qingdao’s garbage classification policy and combined with the residents’ questionnaire survey. Among the commonly used CNN models, the inception-v3 model has higher accuracy than other models. Experiments show that the accuracy of the garbage classification model based on inception-v3 is above 90%, which can solve the problem of garbage classification to a certain extent.
作者 李丕兵 孙仁诚 LI Pibing;SUN Rencheng(Qingdao University,Qingdao Shandong 266071,China)
机构地区 青岛大学
出处 《信息与电脑》 2021年第4期43-45,共3页 Information & Computer
关键词 深度学习 垃圾分类 inception-v3模型 迁移学习 deep learning garbage classification inception-v3 model transfer learning
  • 相关文献

参考文献5

二级参考文献101

  • 1万磊,佟鑫,盛明伟,秦洪德,唐松奇.Softmax分类器深度学习图像分类方法应用综述[J].导航与控制,2019,0(6):1-9. 被引量:62
  • 2张丹,段锦,顾玲嘉,景文博.基于图像的模拟相机标定方法的研究[J].红外与激光工程,2007,36(z1):561-565. 被引量:18
  • 3姜惠兰,崔虎宝,刘飞,张健.基于模糊逻辑和支持向量机的高压输电线路故障分类器[J].中国电力,2005,38(3):13-17. 被引量:9
  • 4KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[C]∥Advances in Neural Information Processing Systems.Red Hook,NY:Curran Associates,2012:1097-1105.
  • 5DAHL G E,YU D,DENG L,et al.Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition[J].Audio,Speech,and Language Processing,IEEE Transactions on,2012,20(1):30-42.
  • 6ZEN H,SENIOR A,SCHUSTER M.Statistical parametric speech synthesis using deep neural networks[C]∥Acoustics,Speech and Signal Processing(ICASSP),20131EEE International Conference on.Piscataway,NJ:IEEE,2013:7962-7966.
  • 7BAHDANAU D,CHO K,BENGIO Y.Neural machine translation by jointly learning to align and translate[J].CoRR,2014:abs/1409.0473.
  • 8ZEILER M D,FERGUS R.Visualizing and understanding convolutional neural networks[J].CoRR,2013:abs/1311.2901.
  • 9SERMANET P,EIGEN D,ZHANG X,et al.Overfeat:integrated recognition,localization and detection using convolutional networks[J].CoRR,2013:abs/1312.6229.
  • 10RUSSAKOVSKY O,DENG J,SU H,et al.Image Net large scale visual recognition challenge[J].CoRR,2014:abs/1409.0575.

共引文献484

同被引文献19

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部