摘要
由于网络空间安全的知识、技术的更新速度很快,因此很难构建一个非常完备的知识库。基于此,笔者探讨了基于大数据和BiLSTM+CRF的网络空间安全领域命名实体识别,在采集到的网络空间安全文章中抽取出11种网络空间安全领域实体。实验结果表明,该方法的准确率达到98.07%。
Due to the rapid update of cyberspace security knowledge and technology,it is difficult to build a very complete knowledge base.Based on this,the author discussed the recognition of named entities in the cyberspace security domain based on big data and BiLSTM+CRF,and extracted 11 cyberspace security domain entities from the collected cyberspace security articles.Experimental results show that the accuracy of this method reaches 98.07%.
作者
陈雄
李昕昕
李碧君
陈磊辉
吴焱
CHEN Xiong;LI Xinxin;LI Bijun;CHEN Leihui;WU Yan(School of Computer and Information Security,Guilin University of Electronic Technology,Guilin Guangxi 541004,China)
出处
《信息与电脑》
2021年第4期134-136,共3页
Information & Computer
基金
国家大学生创新训练“基于大数据的网络安全网站画像与网络技术知识分类集成App”项目成果(项目编号:202010595067)。