摘要
该文借助于有限和形式的常系数Hamilton算子,将一般体系循环算子的获得方法应用到无穷维形式的Hamilton正则系统.在结果方面,获得了约束条件下一阶常系数Hamilton算子所允许的循环算子的一般结构及其系数的具体形式.又通过算例验证了结论的正确性与便捷性.
By virtue of limited and formal constant coefficient Hamiltonian operator,it applies the method of general system recursion operator to Hamiltonian canonical system of infinite dimensional form.As to the result,the general structure of the recursion operator allowed by the next-order constant coefficient Hamiltonian operator under constraint condition and specific form of its coefficient are obtained.And then,it verifies the correctness and convenience of the conclusion by means of calculating example.
作者
耿万鹏
任文秀
程意苏
Geng Wanpeng;Ren Wenxiu;Cheng Yisu(School of Sciences,Inner Mongolia University of Technology,Hohhot 010051)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2021年第2期326-335,共10页
Acta Mathematica Scientia