摘要
该文针对向列相液晶流,提出了一种模块grad-div稳定化有限元方法,主要是在向后欧拉格式中增加了一个后处理步骤.该方法可以惩罚原有格式的质量不守恒性,但不会随着稳定化参数的变大而使计算时间增加.此外,该文给出了向列相液晶流的速度和分子方向的误差估计,还通过数值实验验证了理论分析.
In this paper,we presents a modular grad-div stabilized finite element method for nematic liquid crystal flow,which adds to the backward Euler scheme a post precessing step.This method can penalize for lack of mass conservation but it does not increase computational time for increasing stabilized parameters.Moreover,error estimates for velocity and molecular orientation of the nematic liquid crystal flow are shown.Finally,the theoretical findings and numerical efficiency are verified by numerical experiments.
作者
李婷
黄鹏展
Li Ting;Huang Pengzhan(College of Mathematics and System Sciences,Xinjiang University,Urumqi 830046)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2021年第2期451-467,共17页
Acta Mathematica Scientia
基金
国家自然科学基金(11861067)。