摘要
该文提出正则化非单调非精确光滑牛顿法求解对称锥权互补问题(wSCCP).算法将正则化参数视为一个独立变量,因此它与许多现有的算法相比,更简单易实现.在每次迭代中,算法只需求得方程组的近似解.另外,算法中的非单调线搜索包含了两种常用的非单调形式.在单调假设下,证明算法全局收敛且局部二阶收敛.最后,一些数值结果表明了算法的有效性.
In this paper,we propose a regularized nonmonotone inexact smoothing Newton algorithm for solving the weighted symmetric cone complementarity problem(wSCCP).In the algorithm,we consider the regularized parameter as an independent variable.Therefore,it is simpler and easier to implement than many available algorithms.At each iteration,we only need to obtain an inexact solution of a system of equations.Moreover,the nonmonotone line search technique adopted in our algorithm includes two popular nonmonotone search schemes.We prove that the algorithm is globally and locally quadratically convergent under suitable assumptions.Finally,some preliminary numerical results indicate the effectiveness of our algorithm.
作者
迟晓妮
曾荣
刘三阳
朱志斌
Chi Xiaoni;Zeng Rong;Liu Sanyang;Zhu Zhibin(School of Mathematics and Computing Science,Guilin University of Electronic Technology,Guangxi Guilin 541004;Guangxi Key Laboratory of Cryptography and Information Security,Guangxi Guilin 541004;Guangxi Key Laboratory of Automatic Detecting Technology and Instruments,Guangxi Guilin 541004;School of Mathematics and Statistics,Xidian University,Xi'an 710071)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2021年第2期507-522,共16页
Acta Mathematica Scientia
基金
国家自然科学基金(11861026,61877046,61967004)
广西自然科学基金(2016GXNSFBA380102)
广西密码学与信息安全重点实验室研究课题(GCIS201819)
广西自动检测技术与仪器重点实验室基金(YQ18112)。
关键词
正则化非精确牛顿法
对称锥权互补问题
非单调线搜索
全局收敛
局部二阶收敛
Regularized inexact smoothing Newton algorithm
Weighted symmetric cone complementarity problem
Nonmonotone line search
Global convergence
Locally quadratic convergence