期刊文献+

对称锥权互补问题的正则化非单调非精确光滑牛顿法 被引量:1

A Regularized Nonmonotone Inexact Smoothing Newton Algorithm for Weighted Symmetric Cone Complementarity Problems
下载PDF
导出
摘要 该文提出正则化非单调非精确光滑牛顿法求解对称锥权互补问题(wSCCP).算法将正则化参数视为一个独立变量,因此它与许多现有的算法相比,更简单易实现.在每次迭代中,算法只需求得方程组的近似解.另外,算法中的非单调线搜索包含了两种常用的非单调形式.在单调假设下,证明算法全局收敛且局部二阶收敛.最后,一些数值结果表明了算法的有效性. In this paper,we propose a regularized nonmonotone inexact smoothing Newton algorithm for solving the weighted symmetric cone complementarity problem(wSCCP).In the algorithm,we consider the regularized parameter as an independent variable.Therefore,it is simpler and easier to implement than many available algorithms.At each iteration,we only need to obtain an inexact solution of a system of equations.Moreover,the nonmonotone line search technique adopted in our algorithm includes two popular nonmonotone search schemes.We prove that the algorithm is globally and locally quadratically convergent under suitable assumptions.Finally,some preliminary numerical results indicate the effectiveness of our algorithm.
作者 迟晓妮 曾荣 刘三阳 朱志斌 Chi Xiaoni;Zeng Rong;Liu Sanyang;Zhu Zhibin(School of Mathematics and Computing Science,Guilin University of Electronic Technology,Guangxi Guilin 541004;Guangxi Key Laboratory of Cryptography and Information Security,Guangxi Guilin 541004;Guangxi Key Laboratory of Automatic Detecting Technology and Instruments,Guangxi Guilin 541004;School of Mathematics and Statistics,Xidian University,Xi'an 710071)
出处 《数学物理学报(A辑)》 CSCD 北大核心 2021年第2期507-522,共16页 Acta Mathematica Scientia
基金 国家自然科学基金(11861026,61877046,61967004) 广西自然科学基金(2016GXNSFBA380102) 广西密码学与信息安全重点实验室研究课题(GCIS201819) 广西自动检测技术与仪器重点实验室基金(YQ18112)。
关键词 正则化非精确牛顿法 对称锥权互补问题 非单调线搜索 全局收敛 局部二阶收敛 Regularized inexact smoothing Newton algorithm Weighted symmetric cone complementarity problem Nonmonotone line search Global convergence Locally quadratic convergence
  • 相关文献

参考文献5

二级参考文献25

  • 1盛保怀,刘三阳.THE OPTIMALITY CONDITIONS OF NONCONVEXSET-VALUED VECTOR OPTIMIZATION[J].Acta Mathematica Scientia,2002,22(1):47-55. 被引量:2
  • 2Wan Zhongping\ Wu Guoming.ASYMPTOTIC SURROGATE CONSTRAINT METHOD AND ITS CONVERGENCE FOR A CLASS OF SEMI-INFINITE PROGRAMMING[J].Applied Mathematics(A Journal of Chinese Universities),1999,14(4):485-491. 被引量:2
  • 3余谦,黄崇超,江燕.A POLYNOMIAL PREDICTOR-CORRECTOR INTERIOR-POINT ALGORITHM FOR CONVEX QUADRATIC PROGRAMMING[J].Acta Mathematica Scientia,2006,26(2):265-270. 被引量:4
  • 4Chua C B, Yi P. A continuation method for nonlinear complementarity problems over symmetric cones. SIAM Journal on Optimization, 2010, 20: 2560-2583.
  • 5Fang L, He G P, Hu Y H. A new smoothing Newton-type method for second-order cone programming problems. Applied Mathematics and Computation, 2009, 215:1020-1029.
  • 6Huang Z H, Ni T. Smoothing algorithms for complementarity problems over symmetric cones. Comput Optim Appl, 2010, 45:557-579.
  • 7Kong L C, Sun J, Xiu N H. A regularized smoothing Newton method for symmetric cone complementarity problems. SIAM Journal on Optimization 2008, 19:1028-1047.
  • 8Liu X H, Huang Z H. A smoothing Newton algorithms based on one-parametric class of smoothing functions for linear programming over symmetric cones. Mathematical Methods of Operations Research, 2009, 70: 385-404.
  • 9Ni T, Gu W Z. Smoothing Newton algorithm for symmetric cone complementarity problems based on a one-parametric class of smoothing functions. Journal of Applied Mathematics and Computing, 2011, 35: 73-92.
  • 10Rui S P, Xu C X. A smoothing inexact Newton method for nonlinear complementarity problems. Journal of Computational and Applied Mathematics, 2010, 233:2332 2338.

共引文献26

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部