摘要
【目的】为了得到两条路的积图的邻点扩展和可区别全色数。【方法】直接构造了两路的笛卡尔积、直积、半强积的邻点扩展和可区别全染色。【结果】得到这3类积图的邻点扩展和可区别全色数。【结论】证明了NESDTC猜想对于两路的笛卡尔积、直积、半强积成立。
[Purposes]To obtain the neighbor expanded sum and distinguishing total chromatic number of product graph of two paths.[Methods]The neighbor expanded sum and distinguishing total coloring of product graphs are constructed,such as the Cartesian product,direct product and semi-strong product.[Findings]The neighbor expanded sum and distinguishing total chromatic number of two paths are given.[Conclusions]NESDTC conjecture is true for the product graphs of paths.
作者
李永艳
LI Yongyan(Department of Mathematics,Haibin College,Beijing Jiaotong University,Huanghua Hebei 061199,China)
出处
《重庆师范大学学报(自然科学版)》
CAS
北大核心
2021年第1期60-63,共4页
Journal of Chongqing Normal University:Natural Science
基金
北京交通大学海滨学院重点科研项目(No.HBJY18004)
北京交通大学海滨学院校级教改项目(No.HBJY19013)。
关键词
积图
邻点扩展和可区别全色数
邻点扩展和可区别全染色
product graph
neighbor expanded sum and distinguishing total chromatic number
neighbor expanded sum and distinguishing total coloring