摘要
在研究人工鱼群算法缺点的基础上,为了提高概率积分法预计参数的准确性,提出改进鱼群算法(ADAFSA),建立ADAFSA-BP预计模型。以我国40个工作面的地质采矿条件为训练集和测试集,将ADAFSA-BP模型与BP模型、GA-BP模型进行对比分析。结果表明:ADAFSA-BP模型对参数的预测平均相对误差均低于10%,满足精度要求,同时在小数据量学习方面ADAFSA-BP模型优于BP模型和GA-BP模型。
On the basis of studying the shortcomings of artificial fish school algorithm,in order to improve the accuracy of probability integral method,an improved fish school algorithm(ADAFSA)is proposed and ADAFSA-BP prediction model is established.Taking the geological and mining conditions of 40 working faces in China as the training set and test set,the ADAFSA-BP model is compared with BP model and GA-BP model.The results show that:the average relative error of ADAFSA-BP model is less than 10%,which meets the accuracy requirements.At the same time,ADAFSA-BP model is better than BP model and GA-BP model in small amount of data learning.
作者
郑文博
余学祥
赵祥硕
杨邵文
ZHENG Wen-bo;YU Xue-xiang;ZHAO Xiang-shuo;YANG Shao-wen(School of Spatial Information and Mapping Engineering,Anhui University of Technology,Huainan 232001,China;Key Laboratory of Collaborative Monitoring and Early Warning of Mining Induced Disasters in Anhui Province,Huainan 232001,China;Coal Industry Engineering Research Center for Collaborative Monitoring of Mine Environment and Disasters,Huainan 232001,China)
出处
《河南城建学院学报》
CAS
2021年第1期66-72,共7页
Journal of Henan University of Urban Construction
基金
国家自然科学基金项目(41474026)
淮南矿业(集团)有限责任公司项目(HNKY-JTJS(2018)-178,HNKY-JTJS(2017)-122)
中煤新集刘庄矿业有限公司项目(ZMXJ-LZ-JS-2018-25)。