期刊文献+

具有随机特征频率和延迟核函数的分数阶线性振荡器中的随机共振 被引量:1

Stochastic resonance in a fractional order linear oscillator with random characteristic frequency and time-delayed kernel function
下载PDF
导出
摘要 研究了具有延迟核函数和随机特征频率的分数阶线性振荡器中的随机共振(stochastic resonance,SR)现象。基于线性系统理论,利用拉普拉斯变换,推导出了分数维振荡器系统输出幅度(system output amplitude,SOA)的解析表达式。分析表明,SOA是核函数延迟时间的周期函数。在SOA与噪声相关率、噪声幅值、分数维数的关系曲线上都发现了随机共振现象。分析了SOA与系统参数及噪声稳态概率间的非单调依赖行为。 Stochastic resonance(SR)phenomena in a fractional order linear oscillator with time-delayed kernel function and random characteristic frequency were investigated.Base on the linear system theory,using Laplace transformation,the analytical expression for the system output amplitude(SOA)of a fractional order oscillator was derived.It was shown that SOA is a periodic function of delayed-time of the kernel function;SR phenomena appear in relation curves of SOA versus noise correlation rate,SOA versus noise amplitude,and SOA versus fractional dimension,respectively.The non-monotonous dependence of SOA on system parameters and noise steady-state probability was analyzed.
作者 朱福成 郭锋 ZHU Fucheng;GUO Feng(Teaching Supervisory Committee,Mianyang Polytechnic,Mianyang 621000,China;School of Information Engineering,Southwest University of Science and Technology,Mianyang 621010,China)
出处 《振动与冲击》 EI CSCD 北大核心 2021年第7期75-80,共6页 Journal of Vibration and Shock
基金 国家自然科学基金面上项目(61771411)。
关键词 随机共振(SR) 分数维线性振荡器 延迟核函数 随机频率 stochastic resonance(SR) fractional order linear oscillator time-delayed kernel function random characteristic frequency
  • 相关文献

参考文献2

二级参考文献17

  • 1Benzi R, Sutera A and Vulpiani A 1981 J. Phys. A 14 L453.
  • 2Benzi R, Parisi G, Sutera A and Vulpiani A 1982 Tellus 34 10.
  • 3Steve G, Ivan L and Andre L 1999 Phys. Rev. E 59 3970.
  • 4Frank T D 2005 Phys. Rev. E 71 031106.
  • 5Zeng C H, Sun Y L and Chen G X 2009 Mod. Phys. Lett. B 23 2281.
  • 6Du X J 2009 Chin, Phys. B 18 70.
  • 7Du L C and Mei D C 2009 Chin. Phys. B 18 946.
  • 8Guo Y F and Xu W 2008 Acta Phys. Sin. 57 6081.
  • 9Zeng C H and Xie C W 2008 Chin. Phys. Lett. 25 1587.
  • 10Novikov E A 1964 Eksp. Teor. Fiz. 47 1919.

共引文献4

同被引文献23

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部