摘要
为提高高校课程质量评价的准确度,提出了一种基于樽海鞘算法优化SVM的高校课程质量评价模型。首先,在借鉴现有高校课程质量评价指标体系研究的基础上,从师资队伍、教学条件、教学条件和教学管理等4个方面建立了高校课程质量评价指标体系。其次,将高校课程质量各评价指标得分数据作为SVM的输入向量,课程质量评价水平作为SVM的输出向量,建立高校课程质量评价SVM模型;最后,运用SSA优化SVM模型的惩罚因子和核函数的核宽,建立SSA-SVM的高校课程质量评价模型。与DA-SVM、PSO-SVM、GA-SVM和SVM相比,SSA-SVM可以有效提高高校课程质量评价效果,为高校课程质量教学改进提供新的方法。
In order to improve the accuracy of course quality evaluation in colleges and universities,a model of course quality evaluation in colleges and universities was proposed based on salpswarm algorithm and SVM.First of all,based on the study of the existing curriculum quality evaluation index system in colleges and universities,this paper establishes the curriculum quality evaluation index system in colleges and universities from four aspects,such as faculty,teaching conditions,teaching conditions and teaching management.Secondly,taking the score data of each evaluation index of college course quality as the input vector of SVM and the course quality evaluation level as the output vector of SVM,the SVM model of college course quality evaluation was established.Finally,SSA was used to optimize the penalty factor of SVM model and kernel width of kernel function to establish the SSA-SVM course quality evaluation model in colleges and universities.Compared with DA-SVM,PSO-SVM,GA-SVM and SVM,SSA-SVM can effectively improve the evaluation effect of curriculum quality in colleges and universities,and provide new methods for improving curriculum quality teaching in colleges and universities.
作者
冯娟
王凯
辛梅
Feng Juan;Wang Kai;Xin Mei(Xi'an Aviation Vocational and Technical College,Xi'an 710089,Shaanxi,China)
出处
《现代科学仪器》
2021年第2期245-249,共5页
Modern Scientific Instruments
基金
陕西省教育厅2018年度专项科学研究计划(18JK0412)。
关键词
樽海鞘算法
支持向量机
课程质量评价
教学条件
教学管理
salpswarm algorithm
support vector machine
course quality evaluation
teaching condition
teaching management