期刊文献+

伺服系统转动惯量辨识及控制器PI参数优化 被引量:4

Servo System Inertia Identification and Controller PI Parameter Optimization
下载PDF
导出
摘要 在机器人运行时,为了使伺服电机在最优性能下达到目标速度、在工作过程中有着更强的抗扰动能力,并避免出现震荡、谐振的状况,从而造成机器人运行时动态稳定性严重降低。提出一种基于非线性动态学习因子的粒子群优化算法,对普通粒子群优化算法进行改进。该算法以伺服系统控制模型中的速度控制器为核心,实时辨识负载转动惯量值,使伺服系统内部控制参数根据实际工况调节;运用该辨识值,通过计算得到速度控制PI参数值,并实时修正速度控制器PI参数值。MATLAB/SIMULINK仿真结果表明,与传统的粒子群优化算法相比,无论在电机启动过程中、还是负载扰动下,该方法都具有更快的响应速度、更高的控制精度以及更强的抗干扰能力。 During the operation of the robot,in order to make the servo motor achieve the target speed under the optimal performance,and have stronger anti-disturbance ability in the working process,and to avoid the problem of vibration and resonance,resulting in a serious reduction in the dynamic stability of the robot.The control model of servo motor is analyzed,and a particle swarm optimization algorithm based on nonlinear dynamic learning factor is proposed.The algorithm takes the speed controller in the servo system control model as the core,and can identify the load's moment of inertia in real time,so that the internal control parameters of the servo system can be adjusted according to the actual conditions.By using the identification value,the PI parameter value of the speed control is obtained through calculation,and the PI parameter value of the speed controller is corrected in real time.The results of MATLAB/SIMULINK simulation show that compared with the traditional particle swarm optimization algorithm,this method has faster response speed,higher control accuracy and stronger anti-interference ability,whether in the motor starting process or under the load disturbance.
作者 孙彦瑞 苏成志 SUN Yan-rui;SU Cheng-zhi(School of Mechanical and Electrical Engineering,Changchun University of Science and Technology,Changchun 130000,China)
出处 《组合机床与自动化加工技术》 北大核心 2021年第4期96-99,104,共5页 Modular Machine Tool & Automatic Manufacturing Technique
基金 国防基础科研计划资助(JCKY2019411B001)。
关键词 转动惯量 非线性动态学习因子 粒子群优化算法 速度控制器PI参数 moment of inertia nonlinear dynamic learning factor particle swarm optimization algorithm speed controller PI parameter
  • 相关文献

参考文献4

二级参考文献27

  • 1陈文华.ITAE最优控制系统设计[J].控制与决策,1996,11(1):58-62. 被引量:4
  • 2高扬,杨明,于泳,徐殿国.基于扰动观测器的PMSM交流伺服系统低速控制[J].中国电机工程学报,2005,25(22):125-129. 被引量:43
  • 3高瑾,胡育文.调速型永磁同步电机参数优化设计的一种图形化方法[J].电工技术学报,2006,21(4):92-97. 被引量:4
  • 4Marco Ursini, Francesco Parasiliti, Zhang Daqing. Real-time gain tuning of PI controllers forhigh-performance PMSM drives[J]. IEEE Transactions on Industry Applications, 2002, 38(4):1018-2026.
  • 5Choi Jong Woo, Lee Sang Cheol. Antiwindup strategy for PI-type speed controller[J]. IEEE Transactions on Industrial Electronics, 2009, 56(6): 2039-2046.
  • 6Choi J W, Lee S C, Kim H G. Inertia identification algorithm for high-performance speed control of electric motors[J]. IEE Proceedings of Electric Power Applications, 2006, 153(3): 379-386.
  • 7Guo Yujie, Huang Lipei. Inertia identification and auto-tuning of induction motor using MRAC[J]. IEEE Transactions on Power Electronics, 2002, 13(4): 47-54.
  • 8Fukashi Andoh. Moment of inertia identificationusing the time average of the product of torque reference input and motor position[J]. IEEE Transactions on Power Electronics, 2007, 22(6) 2534-2543.
  • 9汤蕴璎 史乃.电机学[M].北京:机械工业出版社,2001..
  • 10[法]朗道(LanDau,I.n)著,自适应控制:模型参考法[M].北京:国防工业出版社,1985.

共引文献34

同被引文献50

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部