期刊文献+

A Real-Time Multi-Stage Architecture for Pose Estimation of Zebrafish Head with Convolutional Neural Networks

原文传递
导出
摘要 In order to conduct optical neurophysiology experiments on a freely swimming zebrafish,it is essential to quantify the zebrafish head to determine exact lighting positions.To efficiently quantify a zebrafish head's behaviors with limited resources,we propose a real-time multi-stage architecture based on convolutional neural networks for pose estimation of the zebrafish head on CPUs.Each stage is implemented with a small neural network.Specifically,a light-weight object detector named Micro-YOLO is used to detect a coarse region of the zebrafish head in the first stage.In the second stage,a tiny bounding box refinement network is devised to produce a high-quality bounding box around the zebrafish head.Finally,a small pose estimation network named tiny-hourglass is designed to detect keypoints in the zebrafish head.The experimental results show that using Micro-YOLO combined with RegressNet to predict the zebrafish head region is not only more accurate but also much faster than Faster R-CNN which is the representative of two-stage detectors.Compared with DeepLabCut,a state-of-the-art method to estimate poses for user-defined body parts,our multi-stage architecture can achieve a higher accuracy,and runs 19x faster than it on CPUs.
出处 《Journal of Computer Science & Technology》 SCIE EI CSCD 2021年第2期434-444,共11页 计算机科学技术学报(英文版)
基金 This work was supported in part by the National Key Research and Development Program of China under Grant No.2018YFC1504104 the Fundamental Research Funds for the Central Universities of China under Grant No.WK6030000109 the National Natural Science Foundation of China under Grant No.61877056.
  • 相关文献

参考文献1

二级参考文献1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部