期刊文献+

一道不等式恒成立典型问题的思路与解法

原文传递
导出
摘要 题目已知函数f(x)=2sinx-xcosx-ax(a∈R).当a≤1时,证明:对任意x∈(0,π),f(x)>0.思考1:变换主元法不等式2sinxxcosx-ax>0理解为二元不等式,将a视作主元,记作m(a)=-xa+2sinx-xcosx,是递减的一元一次函数,则当a=1时取最小值为2sinx-xcosx-x,于是问题转化为求证:对任意x∈(0,π),2sinx-xcosx-x>0.
作者 刘海涛
出处 《中学生数学》 2021年第5期18-19,共2页

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部