摘要
为对混合模糊识别和连续性方程的神经网络模型(HNN)进行不确定性分析,采用上下限估计法(LUBE)直接得到神经网络输出层的两个节点值作为区间上下限,将综合评价指标CCWC作为目标函数,寻找最优的预测区间(PI),并以美国乔治亚州Yellow River上测站的日流量和小时流量为例,预测下游河道的区间流量。结果表明,HNN模型在90%、95%置信水平区间具有有效性,其可得到包含更多观测值且宽度更小的预测区间。同时,进一步验证了LUBE在区间预测中应用的合理性。
In order to address uncertainty analysis on a hybrid neural network(HNN)with fuzzy recognition and continuity equation,the lower upper bound estimation(LUBE)method was used to determine two-nodes outputs of neural network as the intervals of the lower and upper bounds.Coverage width-based criterion(CCWC)was taken as the objective function for searching optimal prediction interval(PI).The daily and hourly flows of Yellow River in Georgia of USA were studied as a case to predict the interval flows at the downstream stations.The results demonstrate the suitability of HNN-LUBE model in producing PI in both 90%and 95%confidence levels.It is capable of generating narrower intervals which also contain more observations.Furthermore,the efficiency of LUBE is validated in interval prediction.
作者
陈小云
刘必劲
CHEN Xiao-yun;LIU Bi-jin(School of Civil Engineering and Architecture,Xiamen University of Technology,Xiamen 361024,China)
出处
《水电能源科学》
北大核心
2021年第4期31-35,共5页
Water Resources and Power
基金
2019年度福建省海洋经济发展补助资金项目(FJHJF-L-2019-8)
2019年福建省中青年教师教育科研项目。
关键词
区间预测
神经网络
上下限估计
连续性方程
河流流量
interval prediction
neural network
lower upper bound estimation
continuity equation
river flow