期刊文献+

基于BLSTM-随机森林的短期光伏发电输出功率预测 被引量:16

Output power prediction of short-term photovoltaic power generation based on BLSTM-random forest
下载PDF
导出
摘要 光伏发电功率具有不确定性和波动性,准确预测光伏发电功率对提高光伏并网效率和保持电网安全运行具有重要作用。对江苏某地区光伏发电站的功率特性进行分析,使用小波降噪处理历史功率曲线,并对各气象条件使用灰色关联分析筛选出强相关影响因素,减少输出功率噪声和无关气象条件对功率预测的影响。将小波降噪处理后的历史输出功率及强相关特性构建数据集,建立基于双向长短期记忆网络(BLSTM)与随机森林的短期光伏发电功率预测模型,并与其他模型的预测误差进行比较。仿真结果表明,提出的BLSTM-随机森林的短期光伏功率预测模型具有较高的预测精度。 The power of the photovoltaic power generation has uncertainty and volatility,and the accurate power prediction of photovoltaic power generation plays an important role in improving photovoltaic grid-connection efficiency and maintaining the safe operation of the grid.The power characteristics of PV power generation stations in a certain area of Jiangsu province were analyzed,the wavelet denoising was used to process the historical power curve,and the strong correlation influential factors were selected by grey correlation analysis for each meteorological condition,so as to reduce the influence of output power noise and irrelevant meteorological conditions on power prediction.The data was constructed by using historical output power after wavelet denoising and strong correlation characteristics to build the power prediction model of the short-term photovoltaic power generation based on bidirectional long and short term memory network(BLSTM)and random forest,and the prediction error was compared with the prediction error of other models.The simulation results show that the proposed short-term PV power prediction model based on BLSTM-random forest has high prediction accuracy.
作者 刘志超 袁三男 唐万成 LIU Zhichao;YUAN Sannan;TANG Wancheng(College of Electronics and Information Engineering,Shanghai University of Electric Power,Shanghai 200120,China;Ningxia Radio and Television Monitoring Center,Yinchuan Ningxia 750003,China)
出处 《电源技术》 CAS 北大核心 2021年第4期495-498,共4页 Chinese Journal of Power Sources
关键词 光伏功率预测 小波降噪 灰色关联分析 BLSTM 随机森林 photovoltaic power prediction wavelet denoising gray correlation analysis BLSTM random forest
  • 相关文献

参考文献5

二级参考文献100

  • 1董雷,周文萍,张沛,刘广一,李伟迪.基于动态贝叶斯网络的光伏发电短期概率预测[J].中国电机工程学报,2013,33(S1):38-45. 被引量:77
  • 2韩力群.人工神经网络理论、设计及应用[M].北京:化学工业出版社,2001.123-125.
  • 3王长贵,王斯成.太阳能光伏发电应用技术[M].2版.北京:化学工业出版社,2009.
  • 4LI Yingzi, NIU Jincang. Forecast of power generation for grid- connected photovoltaic system based on Markov chain[C]// Proceedings of Asia-Pacific Power and Energy Engineering Conference, March 28-31, 2009, Wuhan, China, 1-4.
  • 5LI Yingzi, LUAN Ru, NIU Jincang. Forecast of power generation for grid connected photovoltaic system based on grey model and Markov chain[C]// Proceedings of the 3rd IEEE Conference on Industrial Electronics and Applications, June 3 5, 2008, Singapore: 1729-1733.
  • 6SULAIMAN S I, RAHMAN T K A, MUSIRIN I. Partial evolutionary ANN for output prediction of a grid-connectedphotovoltaic system[J]. International Journal of Computer and Electrical Engineering, 2009, 1(1): 40-45.
  • 7YONA A, SENJYU T, SABER A Y, et al. Application of neural network to 24 hour ahead generating power forecasting for PV systemiCS// Proceedings of Power and Energy Society General Meeting Conversion and Delivery of Electrical Energy in the 21st Century, July 20-24, 2008, Pittsburgh, PA, USA: 1-6.
  • 8MELLIT A, PAVAN A M. A 24 h for'ecast of solar irradiance using artificial neural network application for performance prediction of a grid-connected PV plant at Trieste, Italy[J]. Solar Energy, 2010, 84(5): 807-821.
  • 9European Photovoltaic Industry Association. Global market outlook for photovoltaics 2014, 2018[R]. EPIA Report, 2014.
  • 10PVPS lEA. 2014 snapshot of global PV markets[R]. Report lEA PVPS T1-26, 2015.

共引文献486

同被引文献185

引证文献16

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部