摘要
数值积分法中是电力系统暂态稳定分析中重要的研究工作,但受限于交替求解微分一代数方程求解的困难,尝试从网络方程入手解决。引入全纯函数嵌入(holomorphic embedding)理论,重构节点模型,以计算解析解为目标,介绍求解非线性系统的原理与数值逼近理论的应用,之后针对电力系统暂态稳定分析,确保兼容电网中恒功率负荷的情况下分别对直接法和Dommel-Sato迭代法进行全纯函数嵌入的改动并给出计算方法,最后使用算例,从暂态稳定仿真和数值逼近算法特性方面验证算法的有效性。
Numerical integration is an important research work in power system transient stability analysis,but it is lim-ited by the difficulty of alternately solving differential-algebraic equations,in this paper,a network equation algorithm is applied to solve problem.The theory of holomorphic embedding is introduced,and the node model is reconstructed.Aiming at calculating analytical solutions,the principles of solving nonlinear systems and the application of numerical approximation theory are introduced.Then holomorphic embedding is carried out to design the direct method and Dom-mel-Sato iterative method respectively and make it compatible with constant power loads in power system.Finally,a test case is used to verify the effectiveness of the algorithm from the aspects of transient stability simulation and numeri-cal approximation algorithm characteristics.
作者
李思儒
摆世彬
田志浩
刘刚
鲍威
甘德强
LI Si-ru;BAI Shi-bin;TIAN Zhi-hao;LIU Gang;BAO Wei;GAN De-qiang(College of Electrical Engineering,Zhejiang University,Hangzhou 310027,China;State Grid Ningxia Elctric Power Company,Yinchuan 750001,China)
出处
《能源工程》
2021年第2期77-85,共9页
Energy Engineering
关键词
全纯函数
网络方程
数值积分法
数值逼近
非线性负荷
holomorphic embedding
network equation
numerical integration
numerical approximation
nonlinear load