期刊文献+

基于经验模态分解-小波包变换的表面肌电信号手势识别 被引量:7

Empirical mode decomposition and wavelet packet transform applied to surface EMG signal for hand gesture recognition
下载PDF
导出
摘要 为了提高表面肌电信号(sEMG)手部运动识别的正确率,比较常规的sEMG预处理和特征提取方法,提出一种基于经验模态分解(EMD)和小波包变换(WPT)的sEMG手势识别模型。首先,使用EMD方法将sEMG进行平稳化,得到一系列的固有模态函数。其次,求取各个固有模态函数与原始信号的相关性,选取相关性较高的前4个分量作为有效分量。然后,采用Db3小波函数进行WPT,提取小波包系数中的平均能量、平均绝对值、最大值、均方根和方差等特征。分别采用线性判别分析和支持向量机对12种手部运动进行模式识别。结果表明基于EMD和WPT的sEMG手势识别正确率比直接提取小波包系数中的特征识别正确率高。 Compared with conventional surface electromyography(EMG)signal preprocessing and feature extraction methods,a model based on empirical mode decomposition and wavelet packet transform for hand gesture recognition through surface EMG signals is proposed for improving the accuracy of surface EMG signal in hand gesture recognition.Empirical mode decomposition is firstly used to smooth the surface EMG signal for obtaining a series of intrinsic mode functions.Subsequently,the correlation between each intrinsic mode function and the original signal is obtained,and the top 4 components with higher correlation are selected as effective components.Then,Db3 wavelet function is used to perform wavelet packet transformation,and the average energy,average absolute value,maximum value,root mean square and variance of the wavelet packet coefficients are extracted.Finally,linear discriminant analysis and support vector machine are used to recognize 12 hand gestures separately.The results show that the hand gesture recognition accuracy of applying empirical mode decomposition and wavelet packet transform to surface EMG signal is higher than that of directly extracting wavelet packet coefficients.
作者 冯凯 董秀成 刘栋博 FENG Kai;DONG Xiucheng;LIU Dongbo(School of Electrical Engineering and Electronic Information,Xihua University,Chengdu 611730,China)
出处 《中国医学物理学杂志》 CSCD 2021年第4期461-467,共7页 Chinese Journal of Medical Physics
基金 国家自然科学基金青年科学基金(61901393) 四川省科技厅重点项目(2018JY0463) 教育部“春晖计划”科研项目(Z2017076) 四威高科—西华大学产学研联合实验室(2016-YF04-00044-JH)。
关键词 表面肌电信号 经验模态分解 小波包变换 特征提取 模式识别 surface electromyography signal empirical mode decomposition wavelet packet transformation feature extraction pattern recognition
  • 相关文献

参考文献8

二级参考文献72

  • 1杨新亮,罗志增.基于表面肌电信号的时频组合特征融合识别[J].华中科技大学学报(自然科学版),2011,39(S2):153-156. 被引量:8
  • 2Da-peng Yang~1 Jing-dong Zhao~1 Yi-kun Gu~1 Xin-qing Wang~1 Nan Li~1 Li Jiang~1Hong Liu~(1,2) Hai Huang~3 Da-wei Zhao~41.State Key Laboratory of Robotics and System,Harbin Institute of Technology,Harbin 150001,P.R.China2.Institute of Robotics and Mechatronics,German Aerospace Center,Munich 82230,Germany3.College of Shipbuilding Engineering,Harbin Engineering University,Harbin 150001,P.R.China4.College of Automation,Harbin Engineering University,Harbin 150001,P.R.China.An Anthropomorphic Robot Hand Developed Based on Underactuated Mechanism and Controlled by EMG Signals[J].Journal of Bionic Engineering,2009,6(3):255-263. 被引量:17
  • 3熊安斌,赵新刚,韩建达,刘光军.基于混沌理论的面瘫患者表面肌电信号分析[J].科学通报,2013,58(S2):152-165. 被引量:7
  • 4张丽新,王家廞,赵雁南,杨泽红.基于Relief的组合式特征选择[J].复旦学报(自然科学版),2004,43(5):893-898. 被引量:44
  • 5REAZ M B I, HUSSAIN M S, MOHDYASIN F. Techniques of EMG signal analysis: detection, processing, classification and applications[J].Biological Procedures Online, 2006, 8(1): 11-35.
  • 6CHU J U, MOON I, MUN M S. A realtime EMG pattern recognition system based on linearnonlinear feature projection for a multifunction myoelectric hand[J].IEEE Transactions on Biomedical Engineering, 2006, 53(11): 2232-2239.
  • 7BERMEJO P, GMEZ J A, PUERTA J M. A GRASP algorithm for fast hybrid (filterwrapper) feature subset selection in highdimensional datasets[J].Pattern Recognition Letters, 2011, 32(5): 701-711.
  • 8CHEN P, WANG M H, SHEN Y, et al. Reconstruction and analysis of transcription factormiRNA coregulatory feedforward loops in human cancers using filterwrapper feature selection[J].PloS One, 2013, 8(10): e78197.
  • 9FUREY T S, CRISTIANINI N, DUFFY N, et al. Support vector machine classification and validation of cancer tissue samples using microarray expression data[J].Bioinformatics, 2000, 16(10): 906-914.
  • 10LAMBROU T, KUDUMAKIS P, SPELLER R, et al. Classification of audio signals using statistical features on time and wavelet transform domains[C]//Acoustics, Speech and Signal Processing of the IEEE International Conference. USA: IEEE, 1998: 3621-3624.

共引文献96

同被引文献56

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部