期刊文献+

有界域上局部与全局的Radon测度的积分不等式 被引量:1

Some Local and Global Integral Inequalities with Radon Measure on Bounded Domain
原文传递
导出
摘要 选择Laplace-Beltrami算子Δ和Green算子G的复合算子Δ◇G为研究对象,首先证明了有界域的局部圆域上作用于齐次A-调和方程解的复合算子Δ◇G的带Radon测度的积分不等式,然后在此基础上得到有界域上全局的Radon积分不等式. In this paper we choose the composite operator Δ◇G of the Laplace-Beltrami operator Δ and the Green’s operator G as the research object.We first prove the local integral inequality with Radon measure for the composite operator Δ◇ G applied to the solutions of the homogeneous A-harmonic equation on the local circle domain of the bounded domain.Furthermore,we also establish the global integral inequality on the bounded domain.
作者 李群芳 李华灿 LI Qun-fang;LI Hua-can(Department of Mathematics,Ganzhou Teachers College,Ganzhou 341000,China;School of Science,Jiangxi University of Science and Technology,Ganzhou 341000,China)
出处 《数学的实践与认识》 2021年第5期196-202,共7页 Mathematics in Practice and Theory
基金 国家自然科学基金(11961030) 江西省教育厅科技项目(GJJ191244)。
关键词 齐次A-调和方程 RADON测度 积分不等式 复合算子 Homogeneous A-harmonic equation Radon measure Integral inequalities Composite operator
  • 相关文献

参考文献4

二级参考文献34

  • 1Wing-Sum Cheung. Some new Poincar6-type inequalities [J]. Bulletin of The Australian Mathematical Society,2001,63 (2): 321-327.
  • 2B G Pachpatte. On Poincar6-type integral inequalities[J]. Journal of The Mathematical and Application, 1986, 114(1):857.
  • 3Bao G J. Two-weighted Poincar.-Type integral inequalities [J]. Proceedings of the Conference on Differential & Difference Equations and Applications, 2006:141-148.
  • 4Wang Yong. Two-weight Poincar6-Type for differential forms in LS(I.t)- averaging domains[J]. Applied Mathematics Letters, 2007 ( 11 ): 1161-1166.
  • 5A Liu Bing. Ar -weighted caccioppoli-type and Poincar-type inequalities for A- harmonic tensors[J]. International Journal of Mathematics and Mathematical Sciences, 2002(2):115-122.
  • 6Ding S S,Xing Y M,Bao G J. Ar (1)-weight inequalities for A- harmonic tensors and related operators[J]. Journal of Mathematical Analysis and Applications, 2006(1):219-232.
  • 7G R Nicklason. A general class of centers for the Poincar6 problem[J]. Journal of Mathematical Analysis and Applications, 2009 (1): 75-80.
  • 8Craig A. Nolder. Hardy-littlewood theorems for A- harmonic tensors[J]. Illinois Journal of Mathmatics, 1999(4): 613-631.
  • 9Shusen Ding. Some examples of conjugate p- harmonic differential forms [J]. Journal of Mathematical Analysis and Applications, 1998 (1): 251-270.
  • 10Morry, Charles B. Mutiple integrals in the calculus of variayions[M]. Berlin Heidelberg New York:Spring-Verlag, 1966.

共引文献20

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部