摘要
针对Gatys的图像风格迁移算法做了两个方面的改进,首先提出了一种更加适用于风格迁移的卷积网络结构,相较于其他的预训练卷积神经网络模型减少了95%的参数数量,降低了22%以上算法运行时间;其次对风格迁移的风格损失函数部分做了改进,可以使一幅内容图像同时迁移多种不同的画作风格。
Two improvements are made to Gatys’image style transfer method.First,a convolutional network structure that is more suitable for style transfer is proposed.Compared with other pre-trained convolutional neural network models,the number of parameters is reduced by 95%,More than 22%of the algorithm running time.Secondly,the style loss function of style transfer has been improved,so that a content image can transfer multiple different painting styles at the same time.
作者
金智功
周孟然
JIN Zhi-gong;ZHOU Meng-ran(School of Computer Science and Engineering,AnhuiUniversity of Science and Technology,Huainan 232000,Anhui,China;School of Electrical and Information Engineering,AnhuiUniversity of Science and Technology,Huainan 232000,Anhui,China)
出处
《合肥学院学报(综合版)》
2021年第2期27-33,共7页
Journal of Hefei University:Comprehensive ED
基金
国家重点研发计划基金资助项目(2018YFC0604502)
安徽省青年科学基金资助项目(1808085QE157)资助。
关键词
图像风格迁移
卷积神经网络
迁移学习
image style transfer
convolutional neural networks
transfer learning