摘要
发明者创新网络嵌入影响创新绩效,但影响的强弱及方向在学术界尚未达成共识。研究以2000-2019年中国可再生能源领域的专利数据为样本,运用负二项模型和马尔可夫链蒙特卡罗法(MCMC),探索网络嵌入对发明者创新绩效的内在作用机制。研究结果表明:发明者网络关系强度及结构洞通过推动自我网络稳定性而提高创新绩效;发明者利用性学习能力越小,关系强度及结构洞对自我网络稳定性的推动作用越强;发明者利用性学习能力越小,自我网络稳定性在关系强度及结构洞与创新绩效之间所发挥的中介作用越强。本研究明确了创新网络的内在功能机制及边界条件,对发明者创新活动具有指导意义。
Inventor’s innovation network embeddedness affects innovation performance,but there is no consensus on the strength and direction of the impact.Based on the patent data in the field of renewable energy in China from 2000 to 2019,this study uses the negative binomial(NB)model and markov chain monte carlo method(MCMC)to explore the internal mechanism of network embeddedness on inventors'innovation performance.The results show that:Network relationship strength and structure holes improve innovation performance by promoting ego-network stability;The smaller the exploitative learning ability of the inventor,the stronger the relationship strength and structure holes will promote the stability of the egonetwork;Relational strength and structural holes indirectly affect inventor’s innovation performance through ego-network stability,and the indirect effect is strongger when the exploitative learning ability is smaller.This study further clarifies the internal functional mechanism and boundary conditions of the innovation network,which is of guiding significance to the inventor's innovation activities.
作者
毛荐其
嵇金星
刘娜
官建成
MAO Jian-qi;JIJin-xing;LIU Na;GUAN Jian-cheng
出处
《科学决策》
CSSCI
2021年第3期1-17,共17页
Scientific Decision Making
基金
国家自然科学基金(项目编号:71702090,71672103,71874176)
山东省社会科学规划研究优势学科项目(项目编号:19BYSJ16)
泰山学者工程专项(项目编号:tsqn201909149)。
关键词
关系强度
结构洞
自我网络稳定性
利用性学习能力
创新绩效
relationship strengthen
structural holes
ego-network stability
exploitative learning ability
innovation performance