期刊文献+

基于改进YOLOv3算法的钢板缺陷检测 被引量:18

Defect detection of steel plate based on improved YOLOv3 algorithm
下载PDF
导出
摘要 针对目前钢板缺陷检测精度和速度的不足,提出了一种改进的YOLOv3检测算法。首先使用小波-中值滤波处理缺陷图像,清除图像里的噪声使图像更平滑。然后在原有网络中的密集连接网络(Darknet-53)上增加一个尺度输出增强算法对小目标缺陷的识别能力。最后为了增强算法模型的准确性对算法原有的损失函数进行优化,得到改进版的YOLOv3算法模型。改进的算法在测试集上的mAP值可以达到64.31,比原有的YOLOv3网络提高了7.9,结果表明了改进算法在钢板缺陷上具有较好的检测效果。 The steel industry is the supporting industry of social development. In order to improve the level of industrial automation and effectively detect the surface defects of steel plates, an improved YOLOv3(you only look once) detection algorithm was proposed. Firstly, wavelet-median filter is used to improve the image contrast. Then, a scale output is added on the Darknet-53 network to enhance the algorithm′s ability to recognize small target defects. Finally, in order to enhance the accuracy of the algorithm model, the original loss function of the algorithm is optimized and the improved YOLOv3 algorithm model is obtained. The mAP value of the improved network can reach 64.31 on the test set, which is 7.9 higher than that of the original YOLOv3 network, which has a better application prospect in plate surface defect detection.
作者 李庆党 李铁林 Li Qingdang;Li Tielin(College of Mechanical and Electrical Engineering,Qingdao University of Science and Technology,Qingdao 266100,China)
出处 《电子测量技术》 北大核心 2021年第2期104-108,共5页 Electronic Measurement Technology
基金 山东省科技厅项目(2017CXGC0607,2017GGX30145)资助。
关键词 YOLOv3算法 对比度 损失函数 表面缺陷 YOLOv3 algorithm contrast loss function surface defect
  • 相关文献

参考文献10

二级参考文献74

  • 1桂有珍,莫小范,韩正甫,郭光灿.1550nm单模光纤中的量子密钥分配[J].量子光学学报,2004,10(3):131-134. 被引量:6
  • 2徐科,孙浩,杨朝霖,张希,王春梅.形态滤波在中厚板表面裂纹在线检测中的应用[J].仪器仪表学报,2006,27(9):1008-1011. 被引量:7
  • 3宋强,徐科,徐金梧.基于结构谱的中厚板表面缺陷识别方法[J].北京科技大学学报,2007,29(3):342-345. 被引量:7
  • 4宋克臣,颜云辉,李骏,等.基于邻域信息评估的热轧钢板表面缺陷图像识别方法:中国,201310210470.6[P].2013.05.30.
  • 5DO M N, VETTERLI M. The contourlet transform: an efficient directional multiresolution representation[J]. IEEE Trans. Image Process, 14(12): 2091-2106. image 2005,.
  • 6JENS K. Tetrolet transform: A new adaptive Haar wavelet algorithm for sparse image representation[J]. VisCommun Image R, 2010, 21(4): 364-374.
  • 7ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by loacally linear embedding[J]. Science, 2000, 290(5500): 2323-2326.
  • 8BELKIN M, MIKHAIL P. Laplacian eigenmaps and spectral techniques for embedding and clustering[M]. Cambridge: MIT Press, 2002.
  • 9HE X, CAI D, MIN W. Statistical and computational analysis of locality preserving projection[C]//Proceedings of the 22nd International Conference on Machine Leaming, 2005: 281-288.
  • 10Xu J, Vazquez D, Lopez A M, et al. Learning a part-based pedestri- an detector in a virtual world [ J ]. IEEE Transactions on Intelligent Transportation Systems ,2014,15 (5) :2121-2131.

共引文献124

同被引文献121

引证文献18

二级引证文献110

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部