期刊文献+

介孔CoMn_(2)O_(4)/还原氧化石墨烯复合材料的制备及其超级电容性能 被引量:4

Preparation of Mesoporous CoMn_(2)O_(4)/Reduced Graphene Oxide Composites and Their Supercapacitor Properties
原文传递
导出
摘要 采用共沉淀法制备了CoMn_(2)O_(4)/还原氧化石墨烯(CoMn_(2)O_(4)/rGO)复合电极材料,并研究了石墨烯含量对CoMn_(2)O_(4)/rGO复合材料形貌、微观结构及电化学性能的影响。结果表明:CoMn_(2)O_(4)纳米颗粒沉积在石墨烯纳米片的表面,随着石墨烯含量的增加,CoMn_(2)O_(4)纳米颗粒在r GO表面的分布逐渐均匀,聚集现象消失。CoMn_(2)O_(4)/rGO具有高的比表面积及优良的电化学性能,其中CoMn_(2)O_(4)/rGO20 (rGO质量分数为20%)电容性能最好,在电流密度1 A/g时具有1 420 F/g的比电容。CoMn_(2)O_(4)/rGO30(rGO质量分数为30%)的倍率性能和循环稳定性能最好。2 000次充放电后,样品CoMn_(2)O_(4)/rGO30在5 A/g时的比电容保持率为94%,样品CoMn_(2)O_(4)的比电容保持率为78%。 CoMn_(2)O_(4) nanoparticles on reduced graphene oxide(CoMn_(2)O_(4)/rGO) composites with different graphene contents were synthesized in situ by a coprecipitation method. The effect of graphene content on the morphology, microstructure and electrochemical properties of CoMn_(2)O_(4)/rGO materials was investigated. The results show that CoMn_(2)O_(4) nanoparticles are deposited on the surface of graphene nanosheets. The distribution of CoMn_(2)O_(4) nanoparticles on the surface of rGO is gradually uniform, and the particle aggregation disappears as graphene content increases. CoMn_(2)O_(4)/rGO exhibits a great specific surface area and an excellent electrochemistry. The optimum capacitance performance of CoMn_(2)O_(4)/rGO20(20% rGO, in mass fraction) can be obtained, and the specific capacitance is 1 420 F/g at 1 A/g. CoMn_(2)O_(4)/rGO30(30% rGO, in mass fraction) has the optimum cyclic stability. The specific capacitance retention rate of CoMn_(2)O_(4)/rGO30 is 94% at 5 A/g, while that of CoMn_(2)O_(4) is 78%, after 2 000 cycles of charges and discharges.
作者 李明伟 杨绍斌 LI Mingwei;YANG Shaobin(College of Materials Science and Engineering,Liaoning Technical University,Fuxin 123000,Liaoning,China)
出处 《硅酸盐学报》 EI CAS CSCD 北大核心 2021年第1期167-173,共7页 Journal of The Chinese Ceramic Society
基金 国家自然基金项目(51274119)。
关键词 还原氧化石墨烯 锰酸钴 超级电容器 复合材料 reduced graphene oxide cobalt manganese supercapacitors composites
  • 相关文献

参考文献3

二级参考文献43

  • 1Son, K. H.; Kwon, S. Y.; Kim, H. P.; Chang, H. W.; Kang, S. S. Constituents from Syzygium aromaticum (L.) Merr. et Perry. Nat. Prod. Sci. 1998, 4, 263-267.
  • 2Wang, H.-F.; Wang, Y.-K.; Yih, K.-H. DPPH free-radical scavenging ability, total phenolic content, and chemical composition analysis of forty-five kinds of essential oils. J. Cosmet. Sci. 2008, 59, 509-522.
  • 3Backheet, E. Y. Micro determination of eugenol, thymol and vanillin in volatile oils and plants. Phytochem. Anal. 1998, 9, 134-140.
  • 4Nam, H.; Kim, M.-M. Eugenol with antioxidant activity inhibits MMP-9 related to metastasis in human fibrosarcoma cells. Food Chem. Toxicol. 2013, 55, 106-112.
  • 5Southwell, I. A.; Russell, M. F.; Davies, N. W. Detecting traces of methyl eugenol in essential oils: Tea tree oil, a case study. Flavour Fragrance 2011, 26, 336-340.
  • 6Sowjanya, J.; Sandhya, T.; Veeresh, B. Ameliorating effect of eugenol on L-arginine induced acute pancreatitis and associated pulmonary complications in rats. Pharmacologia. 2012, 3, 657-664.
  • 7Giilcin, i. Antioxidant activity of eugenol: A structure-activity relationship study. J. Meal Food 2011, 14, 975-985.
  • 8Chang, W.-C.; Hsiao, M.-W.; Wu, H.-C.; Chang, Y.-Y.; Hung, Y.-C.; Ye, J.-C. The analysis of eugenol from the essential oil of Eugenia caryophyllata by HPLC and against the proliferation of cervical cancer cells. J. Med. Plants Res. 2011, 5, 1121-1127.
  • 9Gopu, C. L.; Aher, S.; Mehta, H.; Paradkar, A. R.; Mahadik, K. R. Simultaneous determination ofcinnamaldehyde, eugenol and piperine by HPTLC densitometric method. Phytochem. Anal. 2008, 19, 116-121.
  • 10Anu Prathap, M. U.; Sun, S. N.; Wei, C.; Xu, Z. C. J. A novel non-enzymatic lindane sensor based on CuO-MnO2 hierarchical nano-microstructures for enhanced sensitivity. Chem. Commun. 2015, 51, 43764379.

共引文献6

同被引文献14

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部