期刊文献+

Ext-强W_(P)-Gorenstein模

Ext-Strong WP-Gorenstein Modules
下载PDF
导出
摘要 一般情况下,强W_(P)-Gorenstein模关于扩张不封闭,因此强W_(P)-Gorenstein模不是Pc(R)可解的.是否C投射模和强W_(P)-Gorenstein模之间存在一个Pc(R)可解类?引入一个特殊的Pc(R)可解类,即Ext强W_(P)-Gorenstein模,证明了Ext强W_(P)-Gorenstein模是Pc(R)可解类,并且讨论了Ext强W_(P)-Gorenstein模的预覆盖. In general,the strongly W_(P)-Gorenstein modules are not closed under extensions and,therefore,the class of strongly W_(P)-Gorenstein modules is not Pc(R)-resolving.Whether or not there exists a Pc(R)-resolving between the class of C-projective and strongly W_(P)-Gorenstein modules?So a particular Pc(R)-resolving class has been introduced,which is called the class of Ext-strongly W_(P)-Gorenstein module,the class of Ext-strongly W_(P)-Gorenstein modules is Pc(R)-resolving are investigated,and Ext-strongly W_(P)-Gorensteinprecover are discussed.
作者 刘雅娟 张翠萍 LIU Ya-juan;ZHANG Cui-ping(School of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China)
出处 《西南师范大学学报(自然科学版)》 CAS 2021年第4期9-14,共6页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(11761060).
关键词 Pc(R)可解类 强W_(P)Gorenstein模 Ext强W_(P)-Gorenstein模 预覆盖 Pc(R)-resolving class strongly W_(P)-Gorenstein modules Ext-strongly W_(P)-Gorenstein modules precover
  • 相关文献

参考文献5

二级参考文献13

  • 1YANG Xiao-yan, LIU Zhong-kui. Strongly Gorenstein Projective, Injective and Flat Modules ~JJ. J Algebra, 2008, 320(.7) : 2659-2674.
  • 2GAO Zeng-hui, WANG Fang-gui. Coherent Rings and Gorenstein FP-Injective Modules [J]. Comm Algebra, 2012, 40:1669 -1679.
  • 3GAO Zeng-hui. Weak Gorenstein Projective, Injective and Flat Modules EJ]. J Algebra Appl, 2013, 12(2): 3841-3858.
  • 4GAO Zeng-hui, On Strongly Gorenstein FP-Injective Modules EJ]. Comm Algebra, 2013, 41: 3035-3044.
  • 5ROTMAN J J. An Introduction to Homologieal Algebra [M]. New York: Academic Press, 1979.
  • 6STENSTOM B. Coherent Rings and FP-Inieetive Modules []]. J Lond Math Soc, 1970(2) : 323-329.
  • 7DING Nan-qing, CHEN Jian-long. The Flat Dimension of Injeetive Modules [J]. Manu Math, 1993, 78: 165-177.
  • 8JAIN S. Flat and FP-Injectivity [J]. Proc Amer Math Soe, 1973, 41: 437-442.
  • 9朱辉辉.GorensteinFP-投射模[J].山东大学学报(理学版),2011,46(2):110-113. 被引量:2
  • 10刘仲奎,陈文静.Gorenstein fp-投射模和Gorenstein fp-内射模[J].西北师范大学学报(自然科学版),2014,50(4):1-5. 被引量:1

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部