摘要
一般情况下,强W_(P)-Gorenstein模关于扩张不封闭,因此强W_(P)-Gorenstein模不是Pc(R)可解的.是否C投射模和强W_(P)-Gorenstein模之间存在一个Pc(R)可解类?引入一个特殊的Pc(R)可解类,即Ext强W_(P)-Gorenstein模,证明了Ext强W_(P)-Gorenstein模是Pc(R)可解类,并且讨论了Ext强W_(P)-Gorenstein模的预覆盖.
In general,the strongly W_(P)-Gorenstein modules are not closed under extensions and,therefore,the class of strongly W_(P)-Gorenstein modules is not Pc(R)-resolving.Whether or not there exists a Pc(R)-resolving between the class of C-projective and strongly W_(P)-Gorenstein modules?So a particular Pc(R)-resolving class has been introduced,which is called the class of Ext-strongly W_(P)-Gorenstein module,the class of Ext-strongly W_(P)-Gorenstein modules is Pc(R)-resolving are investigated,and Ext-strongly W_(P)-Gorensteinprecover are discussed.
作者
刘雅娟
张翠萍
LIU Ya-juan;ZHANG Cui-ping(School of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China)
出处
《西南师范大学学报(自然科学版)》
CAS
2021年第4期9-14,共6页
Journal of Southwest China Normal University(Natural Science Edition)
基金
国家自然科学基金项目(11761060).