摘要
主要研究了黎曼流形中的等距浸入近Yamabe孤立子.使用Hopf极大值原理及子流形的基本方程,得到了近Yamabe孤立子是全测地或全脐的充分条件.对欧氏单位球面Sn+1中的非平凡紧致极小梯度近Yamabe孤立子(Mn,g,f,ρ),证明了若Mn的数量曲率S≥n(n-2),则Mn等距于欧氏球面.
In this paper,we study isometrical immersion of almost Yamabe solitons in a Riemannian manifold.By using Hopf's maximum principles and the basic equations of the submanifold,we obtain the sufficient conditions for submanifold to be totally geodesic,or totally umbilical.For a compact minimal gradient almost Yamabe solitons(Mn,g,f,ρ)in Euclidean sphere Sn+1,we prove that Mn isometrics to Euclidean sphere if its scalar curvature S≥n(n-2).
作者
吴玉婷
刘建成
WU Yu-ting;LIU Jian-cheng(School of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China)
出处
《西南师范大学学报(自然科学版)》
CAS
2021年第4期25-28,共4页
Journal of Southwest China Normal University(Natural Science Edition)
基金
国家自然科学基金项目(11761061).
关键词
近Yamabe孤立子
极小浸入
全测地
全脐
almost Yamabe solitons
minimally immersion
totally geodesic
totally umbilical