摘要
介绍了一类具有三平移的3-RRC并联机构,并对该机构的自由度、位置正逆解、工作空间、奇异位形进行分析计算;利用基于螺旋理论(反螺旋)的自由度分析原理结合动平台约束分布给出了机构在任一位形下的自由度,并获得了运动奇异产生的几何条件;给出了位置分析的逆解析解,导出了位置正解的公式,并给出具体求解步骤;利用有逆解的充分必要条件推导出了工作空间;对主动件锁住后形成的新机构进行自由度分析从而得到约束奇异产生的几何条件。
Introduced a class of 3-DOF translational parallel mechanism 3-RRC,kinematics for 3-RRC is analysed including DOF,position,singularity,and workspace.According to the mobility principel based on reciprocal screw proposed and constrained distribution of mobile platform,DOF of the mechanism in any configuration is obtained,and obtained geometric conditions that produce kinematic singularity.The closed-formed analytic solutions are developed for inverse kinematics.The forward kinematic formulas were derived by establishing the relationship between the input variables and output variables,and give specific solution steps.The workspace is derived by the necessary and sufficient conditions for the existence of inverse solutions.By analyzing DOF of the new mechanism formed by the locking of the driving link,the geometric conditions of constraint singularity are obtained.
作者
罗建国
邱杰清
赵韵秋
LUO Jian-guo;QIU Jie-qing;ZHAO Yun-qiu(North China Institute of Science and Technology,Mechanical&Electrical School,Beijing 101601,China;North China Institute of Science and Technology,Graduate School,Beijing 101601,China)
出处
《机械设计与制造》
北大核心
2021年第4期277-281,共5页
Machinery Design & Manufacture
基金
中央高校基本科研业务费(3142019047)。
关键词
并联机构
自由度
位置分析
工作空间
奇异位形
Parallel Mechanisms
Degree of Freedom
Position Analysis
Workspace
Singular Configuration