期刊文献+

复杂抽样的Bootstrap方差估计方法及应用 被引量:17

Bootstrap Variance Estimation Method and Application for Complex Sampling
原文传递
导出
摘要 构造总体参数估计量的方差估计是抽样估计重要内容.但当抽样方案复杂或估计量形式复杂时,传统抽样调查的方差估计方法很难适用.本文探究适用于中国人口抽样调查的Bootstrap方差估计方法.为此,首先采用文献解读法,解析复杂抽样Bootstrap方差估计方法的基本理论;接着,提出适用于中国人口抽样调查的重权数Bootstrap方差估计方法与类总体Bootstrap方差估计方法,并对它们的统计性质进行仿真模拟试验;最后,利用天津市2015年全国1%人口抽样调查数据,演示两种Bootstrap方差估计方法的应用,验证其实践有效性.本文有助于提升中国在政府统计抽样估计领域的基础理论研究水平,并为中国人口抽样调查以及其他抽样调查的方案设计和估计提供借鉴. Constructing variance estimator of population parameter estimator is an important part of sampling estimation.However,when the sampling scheme is complex or the representation of estimators is complex,the traditional variance estimation method is difficult to apply.This paper researches the bootstrap variance estimation method applicable to the Chinese population sampling survey.We firs tuse the literature interpret method to analyze the theory foundation of bootstrap variance estimation method for complex sampling.Secondly,the rescaled bootstrap variance estimation method and the pseudo-population bootstrap variance estimation method are revised to suitable for Chinese population sampling survey.A Monte Carlo simulation study was conducted to examine their statistical properties.Finally,using the 1%population sampling survey data of Tianjin in 2015,two bootstrap variance estimation methods is demonstrated to verify their effectiveness in application.This study can improve the theoretical base research level of the Chinese government's statistical sampling estimation,and provide reference for the design and estimation of Chinese population sampling survey and other sampling surveys.
作者 孟杰 沈文静 杨贵军 刘杨 MENG Jie;SHEN Wen-jing;YANG Gui-jun;LIU Yang(Statistics school of Tianjin University of Financial and Economics,Tianjin 300222,China;Population Division of Tianjin Statistic Bureau,Tianjin 300042,China)
出处 《数理统计与管理》 CSSCI 北大核心 2021年第2期266-278,共13页 Journal of Applied Statistics and Management
基金 国家社科基金青年项目(17CTJ002) 国家社科基金重点项目(20ATJ008) 天津市哲学社会科学规划重点课题(TJTJQN19-001) 天津市自然科学基金项目(18JCQNJC69600)。
关键词 方差估计 复杂抽样 BOOTSTRAP方法 variance estimation complex sampling Bootstrap method
  • 相关文献

参考文献8

二级参考文献39

  • 1李莉莉,冯士雍,秦怀振.不放回样本追加策略下域的估计[J].统计研究,2007,24(6):80-85. 被引量:6
  • 2秦淮振.抽样调查中若干理论与实践问题的研究[M].北京:中国统计出版社,2003.
  • 3Wolter K. Introduction to Variance Estimation (2 Ed.) [M]. New York: Springer-Verlag, 2007.
  • 4Rao J N K, Wu C F J, and Yue K. Some recent work in resampling methods [J]. Survey Methodology, 1992, 18: 209-217.
  • 5Krewski D, Rao J N K. Inference from stratified samples: Proper-ties of the linearization, jackknife, and balanced repeated replication methods [J]. Annals of Statistics, 1981, 9: 1010-1019.
  • 6Rao J N K, Shao J. On balanced half sample variance estimation in stratified sampling [J]. Journal of the American Statistical Association, 1996, 91: 343-348.
  • 7Judkins D R. Fay's method for variance estimation [J]. JOS, 1990, 6: 223-229.
  • 8Andy Sadler, Helen Chen. Comparison of Variance Estimation Methods Using PPI Data [C]. JSM 2010 Proceeding, 2010.
  • 9Jonathan J Lisic, Omolola E Ojo. Application of Fay's Method for Variance Estimation in the National [C]. Compensation Survey Benefits Products [A]. JSM 2008 Proceeding, 2008.
  • 10Van L Parsons. Application of a Fay-Modified Balanced Repeated [C]. Replication Method to the National Health Interview Survey (NHIS) [A]. JSM 2010 Proceeding, 2010.

共引文献44

同被引文献173

引证文献17

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部