期刊文献+

Melting Temperature of Individual Electrospun Poly(vinylidene fluoride) Fibers Studied by AFM-based Local Thermal Analysis

原文传递
导出
摘要 Thermal properties such as melting temperature can well reflect the microstructure of the polymer material, and have practical implications in the application of nanofibers. In this work, we investigated the melting temperature of individual electrospun poly(vinylidene fluoride)(PVDF) nanofibers with diameters ranging from smaller than 200 nm to greater than 2 μm by the local thermal analysis technique. The PVDF fibers obtained under four different conditions were found to crystallize into α and β phases, and the fiber mats showed typical values in the crystallinity and Tm with no significant difference among the four. However, analyses at single fiber level revealed broad distribution in diameter and Tm for the fibers produced under identical electrospinning condition. The Tm of individual nanofibers was found to remain constant at large diameters and increase quickly when reducing the fiber diameter toward the nanoscale, and Tm values of 220-230 ℃ were observed for the thinnest nanofibers, much higher than the typical values reported for bulk PVDF. The Tm and molecular orientation at different positions along a beaded fiber were analyzed, showing a similar distribution pattern with a minimum at the bead center and higher values when moving toward both directions. The results indicate that molecular orientation is the driving mechanism for the observed correlation between the Tm and the diameter of the nanofibers.
出处 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2021年第2期219-227,I0007,共10页 高分子科学(英文版)
基金 financially supported by the National Natural Science Foundation of China (No. 21674118)。
  • 相关文献

参考文献2

二级参考文献11

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部