摘要
本文首先建立不依赖自同构从复Banach空间平衡域到Cn单位多圆柱上一定限制条件下全纯映射精细的范数型Bohr定理及复Banach空间X上单位球到复Banach空间Y上单位球全纯映射精细的泛函型Bohr定理.其次,给出有界对称域上全纯映射精细的Bohr定理.最后,得到J*代数单位球上全纯映射精细的Bohr定理.所得结果将一维的Bohr定理推广至高维.
In this paper, we first establish the refined Bohr’s theorem of norm type for holomorphic mappings from the balanced domain in complex Banach spaces to the unit polydisk in Cnunder some restricted conditions and the refined Bohr’s theorem of functional type for holomorphic mappings from the unit ball in one complex Banach space X to the unit ball in another complex Banach space Y without any holomorphic automorphism.Secondly, we get the refined Bohr’s theorem for holomorphic mappings on bounded symmetric domains. We also obtain the refined Bohr’s theorem for holomorphic mappings on the unit ball of a J*-algebra. Our results extend Bohr’s theorem from one dimension to higher dimensions.
作者
刘小松
刘太顺
张文俊
Xiaosong Liu;Taishun Liu;Wenjun Zhang
出处
《中国科学:数学》
CSCD
北大核心
2021年第4期591-604,共14页
Scientia Sinica:Mathematica
基金
国家自然科学基金(批准号:11871257)资助项目。
关键词
Bohr定理
范数型
泛函型
平衡域
不同维数
Bohr theorem
norm type
functional type
balanced domain
different dimensions