摘要
时空数据经常含有奇异点或来自重尾分布,此时基于最小二乘的估计方法效果欠佳,需要更稳健的估计方法.本文提出时空模型的基于局部众数(local modal, LM)的局部线性估计方法.理论和数据分析结果都显示,若数据含有奇异点或来自重尾分布,基于局部众数的局部线性方法比基于最小二乘的局部线性方法有效;若数据无奇异点且来自正态分布,两种方法效率渐近一致.本文采用众数期望最大化(modal expectation-maximization, MEM)算法,并在数据相依情形下得出估计量的渐近正态性.
When the data contain outliers or come from population with heavy-tailed distributions, which appear very often in spatio-temporal data, the estimation methods based on the least square method will not perform well. More robust estimation methods are required. We propose the local linear estimation for the spatio-temporal model based on the local modal method. Asymptotic theory properties and data analysis results show that the proposed estimator is more efficient than the ordinary least square-based estimation in the case of outliers or heavy-tailed error distributions, and as asymptotically efficient as the least square estimator when there are no outliers and the error is a normal distribution. The modal expectation-maximization algorithm is adopted and the asymptotic distributions of estimators are driven when the data are mixing correlation.
作者
汪红霞
林金官
黄性芳
Hongxia Wang;Jinguan Lin;Xingfang Huang
出处
《中国科学:数学》
CSCD
北大核心
2021年第4期615-630,共16页
Scientia Sinica:Mathematica
基金
国家社会科学基金(批准号:17CTJ016)资助项目。
关键词
时空模型
众数期望最大化
混合相依
局部线性回归
spatio-temporal model
modal expectation-maximization
mixing correlation
local linear regression