期刊文献+

时空模型的局部众数回归

Local modal regression for the spatio-temporal model
原文传递
导出
摘要 时空数据经常含有奇异点或来自重尾分布,此时基于最小二乘的估计方法效果欠佳,需要更稳健的估计方法.本文提出时空模型的基于局部众数(local modal, LM)的局部线性估计方法.理论和数据分析结果都显示,若数据含有奇异点或来自重尾分布,基于局部众数的局部线性方法比基于最小二乘的局部线性方法有效;若数据无奇异点且来自正态分布,两种方法效率渐近一致.本文采用众数期望最大化(modal expectation-maximization, MEM)算法,并在数据相依情形下得出估计量的渐近正态性. When the data contain outliers or come from population with heavy-tailed distributions, which appear very often in spatio-temporal data, the estimation methods based on the least square method will not perform well. More robust estimation methods are required. We propose the local linear estimation for the spatio-temporal model based on the local modal method. Asymptotic theory properties and data analysis results show that the proposed estimator is more efficient than the ordinary least square-based estimation in the case of outliers or heavy-tailed error distributions, and as asymptotically efficient as the least square estimator when there are no outliers and the error is a normal distribution. The modal expectation-maximization algorithm is adopted and the asymptotic distributions of estimators are driven when the data are mixing correlation.
作者 汪红霞 林金官 黄性芳 Hongxia Wang;Jinguan Lin;Xingfang Huang
出处 《中国科学:数学》 CSCD 北大核心 2021年第4期615-630,共16页 Scientia Sinica:Mathematica
基金 国家社会科学基金(批准号:17CTJ016)资助项目。
关键词 时空模型 众数期望最大化 混合相依 局部线性回归 spatio-temporal model modal expectation-maximization mixing correlation local linear regression
  • 相关文献

参考文献2

二级参考文献44

  • 1Cleveland,W. S.Robust locally weighted regression and smoothing scatterplots, J.Amer. Statist[].Assoc.1979
  • 2Bickel,P. J.One-step Huber estimates in linear models, J[].Amer Stat Assoc.1975
  • 3Tsybakov,A. B.Robust reconstruction of functions by the local-approximation method[].Problems of Information Transmission.1986
  • 4Cox,D. D.Asympotics for M-type smoothing splines, Ann[].Statistica.1983
  • 5Fan,J.Local linear regression smoothers and their minimax efficiencies, Ann[].Statistica.1993
  • 6Anh V V, Leonenko N. Spectral analysis of fractional kinetic equation with random data. J Statist Phys, 2001, 104:1349-1387.
  • 7Anh V V, McVinish R. Fractional differential equations driven by Lévy noise. J Appl Math Stoch Anal, 2003, 16:87-119.
  • 8Bierens H J. Uniform consistency of kernel estimators of a regression function under generalized conditions. J Amer Statist Assoc, 1983, 77: 699-707.
  • 9Christakos G. Modern Spatiotemporal Geostatistics. New York: Oxford University Press, 2000.
  • 10Cressie N A C. Statistics for Spatial Data. New York: Wiley, 1991.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部