期刊文献+

汽车冲压“工艺-质量”商业智能分析 被引量:1

Business intelligence of automobile“process-quality”stamping production
下载PDF
导出
摘要 为适应汽车冲压生产智能制造的要求,针对车间生产质量控制严重依赖人工经验,生产数据关系难以建立等问题,本文利用偏最小二乘回归方法(PLS)建立映射关系,最终提出冲压商业智能分析模型,用于深入挖掘冲压“工艺—质量”关联关系,并确定影响冲压生产质量关键因子。本模型通过采集冲压工艺过程数据和零件质量数据,采用主成分分析方法对多组自变量进行分类和降维,提取4组主成分作为解释源数据的综合性指标,并结合回归模型中的标准回归系数确定了9个关键因子。经检验,模型判定系数R^(2)=0.7,模型具有简单可靠的预测效果。在实际应用中,该模型可有效建立不同类别零件一对多甚至多对多的映射关系,实现质量超前控制,提高零件下线质量的一致性和稳定性。 To reach the goal of advanced quality control of automobile stamping production,aiming at the problem that production quality relied heavily on manual experience and production data relationship was hard to establish,the Partial Least Square regression(PLS)method was used to constructed a mapping relationship,and a stamping Business Intelligence(BI)analysis model was established to further explore the“process-quality”relationship and determine the key factors affecting the stamping production quality.The multiple groups of independent variables were classified and dimensionality reduced with Principal Component Analysis(PCA)by collecting stamping process data and parts quality data.Four groups of principal components were extracted as comprehensive indicators to interpret the source data,and nine key factors were determined based on the standard regression coefficients in the regression model.Upon examination,model determination coefficient was equal to 0.8,which could prove a practical and reliable prediction result.In practical application,the model could effectively establish one-to-many or even many-to-many mapping relationship of different parts,which improved the consistency and stability of parts'quality and achieved advanced control of production quality.
作者 唐明清 郭钢 陈勤和 伍庆 TANG Mingqing;GUO Gang;CHEN Qinhe;WU Qing(School of Automotive engineering,Chongqing University,Chongqing 400044,China;Sichuan Electric Power Design Consulting Co.,Ltd.,Chengdu 610041,China;School of Mechanical Engineering,Chongqing University,Chongqing 400044,China)
出处 《计算机集成制造系统》 EI CSCD 北大核心 2021年第4期1120-1127,共8页 Computer Integrated Manufacturing Systems
基金 重庆市科委重庆智能化综合科技服务平台研发与应用示范资助项目(cstc2018jszx-cyzdX0083)。
关键词 商业智能 偏最小二乘回归 主成分分析 汽车冲压生产 business intelligence partial least square principal component analysis automobile stamping production
  • 相关文献

参考文献9

二级参考文献46

  • 1江亮,刘健,潘双夏.基于支持向量机的加工误差预测建模方法研究[J].组合机床与自动化加工技术,2005(8):13-15. 被引量:7
  • 2徐礼超,郑松林.缸盖螺栓拧紧力矩对发动机机体振动影响的试验研究[J].机电工程技术,2006,35(10):37-39. 被引量:3
  • 3伍济钢,宾鸿赞.机器视觉的薄片零件尺寸检测系统[J].光学精密工程,2007,15(1):124-130. 被引量:65
  • 4刘艳,任章.基于神经网络的混合模型建模方法及应用[J].计算机仿真,2007,24(2):45-48. 被引量:9
  • 5WANG Xue, TANG Yi-ke, CHENG Ping. Machine-vision detection for rail-steel's surface flaws based on quantum neural network [C]. The 7th World Congress on Intelligent Control and Automation. Chongqing, China, June 25-27, 2008.
  • 6LOPEZ Carlos, GARCIA Daniel F, USAMENTIAGA Ruben,et al. Real-time system for flatness inspection ofsteel strips[J]. Machine Vision Applications in Indus- trial Inspection,2005, 5679(1) :228-238.
  • 7Shewhart M.Interpreting statistical process control(SPC) charts using machine learning and expert system techniques[C]//Proceedings of the IEEE 1992 National Aerospace and Electronics Conference,1992.
  • 8Metaxiotis K,Kagiannas A,Askounis A,et al.Artificial intelligence in short term electric load forecasting:A state-of-the-art survey for the researcher[J].Energy Conversion and Management,2003,44:1525-1534.
  • 9Vapnik V N.The Nature of Statistical Learning Theory[M].New York:Spring-Verlag,1999.
  • 10Vapnik V N.An overview of statistical learning theory[J].IEEE Transaction Neural Networks,1999,10(5):988-999.

共引文献200

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部