摘要
考虑了经常被用于模拟湍流过滤现象的退化抛物方程.运用微分不等式,对初始条件进行一些必要限制之后,得到了Robin边界条件下解的爆破时间的下界以及确保解全局存在的条件.最后,证明了齐次Neumann边界条件下解一定在某个有限时刻发生爆破,并得到了爆破时间的上界.
The degenerate parabolic equation,which is often used to simulate turbulent filtration,is considered.By using differential inequality,the lower bound of the blow-up time of the solution under Robin boundary condition and the conditions to ensure the global existence of the solution are obtained.Finally,we prove that the solution must blow-up at a finite time under homogeneous Neumann boundary condition,and obtain the upper bound of blow-up time.
作者
李远飞
石金诚
肖胜中
LI Yuanfei;SHI Jincheng;XIAO Shengzhong(School of Data Science,Huashang College,Guangdong University of Finance&Economics,Guangdong Guangzhou 511300,China;Research Administration,Guangdong AIB Polytechnic College,Guangdong Guangzhou 510507,China)
出处
《河北师范大学学报(自然科学版)》
CAS
2021年第3期217-223,共7页
Journal of Hebei Normal University:Natural Science
基金
广东省普通高校创新团队项目(2020WCXTD008)。
关键词
退化抛物方程
爆破
上界
微分不等式
degenerate parabolic equation
blow-up
upper bound
differential inequality