期刊文献+

基于平流矢量场和弥散流改进的几何活动轮廓模型 被引量:2

Improved geometric active contour model based on advection vector field and diffusion flows
下载PDF
导出
摘要 几何活动轮廓通过水平集演化捕获目标边界,然而传统方法忽略了前景物体涉及的全局运动及局部形变,从本质上限制了轮廓的动态谐调范围。提出一种由隐式流驱动的几何活动轮廓方法,用于分割形变对象的动态轮廓。根据流体力学,对平流及弥散的隐式流进行建模,从而直接引导水平集的更新。根据图像序列之间有限的运动观测,采用具有平滑和稀疏项的回归算法以拟合平流矢量场。然后,引入受空间梯度约束的非均匀弥散方程,将最终叠加的隐式流用于水平集演化。提出的几何活动轮廓方法构成了一个统一的扩展框架,保留了已有模型对轮廓拓扑变化的适应性。对多个场景下的动态轮廓分割实验表明,提出方法能准确地分割具有全局运动及不规则形变的前景目标,且具有收敛速度快、稳定性强的优点。 Propose a geometric active contour approach driven by implicit flows for segmenting deformative objects. The geometric active contours capture dynamical shapes by yielding initial level-set to image features. However, the interesting objects are often associated with salient motions, which has been ignored by naive level-set methods and thus intrinsically limit the harmonizing range. According to hydrodynamics, the implicit flows involving advections and diffusions are formulated to directly guide the level-set updating. To generate the advective vector field, a regression algorithm with smoothing and sparse is embedded in terms of finite motion vectors among sequence. Also the implicit flows are simultaneously synthesized with the non-uniform diffusions restrained by spatial gradients. The proposed improved geometric active contour model based on advection vector field and diffusion flows is a unified and efficient framework, also the topological preservation is inherited from the original geometric active contours. Experimental results of applying this method to real scenes show that the method has fast convergence speed and can accurately segment deformable objects with global motion.
作者 王蒙 马意 Wang Meng;Ma Yi(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China;Key Laboratory of Artificial Intelligence of Yunnan Province,Kunming 650500,China)
出处 《电子测量技术》 北大核心 2021年第1期114-119,共6页 Electronic Measurement Technology
基金 国家自然科学基金(61563025) 云南省科学技术厅科研项目(KKS0201603019)资助。
关键词 矢量场 动态分割 几何活动轮廓 特征点 平流弥散 vector field dynamic segmentation geometric active contour feature point advection diffusion
  • 相关文献

参考文献7

二级参考文献60

  • 1钱芸,张英杰.水平集的图像分割方法综述[J].中国图象图形学报,2008,13(1):7-13. 被引量:48
  • 2李培华,张田文.主动轮廓线模型(蛇模型)综述[J].软件学报,2000,11(6):751-757. 被引量:125
  • 3Yilmaz A, Javed O, Shah M. Object tracking: a survey. ACM Computing Surveys, 2006, 38(4): 229-240.
  • 4Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-575.
  • 5Feng Z R, Lu N, Jiang P. Posterior probability mea sure for image matching. Pattern Recognition, 2008, 41(7): 2422-2433.
  • 6Hu W M, Tan T N, Wang L, Maybank S. A survey on visual surveillance of object motion and behaviors. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2004, 34(3): 334-352.
  • 7Zhou H Y, Yuan Y, Shi C M. Object tracking using SIFT features and mean shift. Computer Vision and Image Understanding, 2009, 113(3): 345-352.
  • 8Suga A, Fukuda K, Takiguchi T, Ariki Y. Object recognition and segmentation using SIFT and graph cuts. In: Proceedings of the 19th International Conference on Pattern Recognition. Tampa, USA: IEEE, 2008. 1-4.
  • 9Lowe D G. Distinctive image features from scale invariant key points. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 10Lowe D G. Object recognition from local scale invariant features. In: Proceedings of the 7th International Conference on Computer Vision. Corfu, Greece: IEEE, 1999. 1150-1157.

共引文献243

同被引文献23

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部