摘要
针对计量检定实验室对仪表进行检定时人工检定方式效率低下,读数识别系统开发成本高的问题,设计了一套基于树莓派的计量检定实验室仪表读数自动识别系统。系统采用树莓派4B控制摄像头采集仪表读数的图片,然后采用SSDA算法定位图像读数区域,并进行字符分割,再使用BP神经网络和特征匹配算法识别分割出的字符,最后通过SSH方式将识别结果发送给PC端进行存储。实验结果表明,系统运行时间为500~600 ms,读数识别的正确率在92%以上,证明系统可用于计量检定实验室仪表读数的自动识别。
Aiming at the problems of low efficiency of manual verification methods and high development cost of reading recognition system when the measurement verification laboratory verifies meters, a Raspberry Pi-based automatic measurement verification laboratory meter reading recognition system was designed. The system uses the Raspberry Pi 4 B to control the camera to collect the picture of the meter reading, and then uses the SSDA algorithm to locate the image reading area, and perform character segmentation, and then use the BP neural network and feature matching algorithm to recognize the segmented characters, and finally use the SSH method to recognize the results send to PC for storage. The experimental results show that the running time of the system is 500~600 ms, and the accuracy of reading recognition is above 92%, which proves that the system can be used for automatic recognition of meter readings in metrological verification laboratories.
作者
张鑫
张家洪
许晓平
赵振刚
Zhang Xin;Zhang Jiahong;Xu Xiaoping;Zhao Zhengang(School of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China)
出处
《电子测量技术》
北大核心
2021年第1期173-177,共5页
Electronic Measurement Technology
基金
国家自然科学基金(61765009,51667011)
云南省应用基础研究项目(2018FB106)资助。
关键词
实验室仪表读数自动识别
树莓派
SSDA读数区域定位
字符分割
BP神经网络
automatic recognition of laboratory meter readings
Raspberry Pi
SSDA reading area positioning
character segmentation
BP neural network