期刊文献+

一类具有混合时滞的离散型递归神经网络稳定性分析 被引量:1

Stability analysis on discrete-time recurrent neural networks with mixed delays
下载PDF
导出
摘要 为了进一步降低具有混合时滞离散型递归神经网络系统稳定性判据的保守性,建立了1个改进的基于自由权矩阵的双重求和不等式,通过构造1个新的含更多激励函数信息的Lyapunov-Krasovskii泛函,结合Jesen不等式和2个改进的求和不等式估计所构造Lyapunov-Krasovskii泛函前向差分的上界,获得了保守性更低的一类具有混合时滞的离散型递归神经网络系统全局渐近稳定性判定条件,并结合数值实例验证了所得结论的有效性和优越性。 In order to further reduce the conservatism of stability criteria for discrete-time recurrent neural networks with mixed delays,an improved double summation inequality based on free-weighting matrices is proposed.,and a new Lyapunov-Krasovskii functional with more information on activation function is defined.When estimating the difference of the considered Lyapunov-Krasovskii functional,the Jensen inequality and two improved summation inequalities are introduced.Then a new asymptotic stability criterion with less conservative is obtained.Finally,one numerical example is presented to demonstrate the effectiveness and superiority of the result.
作者 邱赛兵 束彦军 Qiu Saibing;Shu Yanjun(School of Mathematics and Statistics,Hunan University of Finance and Economics,Changsha 410205,China;School of Mathematics Sciences,University of Jinan,Jinan 250022,China)
出处 《湖南文理学院学报(自然科学版)》 CAS 2021年第2期5-10,共6页 Journal of Hunan University of Arts and Science(Science and Technology)
基金 国家自然科学基金项目(61907022) 湖南省教育厅基金项目(19C0316) 山东省自然科学基金项目(ZR9BF015)。
关键词 神经网络 LYAPUNOV-KRASOVSKII泛函 自由权矩阵不等式 线性矩阵不等式 neural networks Lyapunov-Krasovskii functional free-weighting matrice inequality linear matrix inequality
  • 相关文献

参考文献5

二级参考文献20

  • 1王林山.时滞递归神经网络[M].北京:科学出版社,2007.
  • 2Gu K Q. A further refinement of discrete Lyapunov functional method for the stability of time-delay sys- tems[J]. International Journal of Control, 2001, 74(10):967-976.
  • 3Zhang Y J, Xu S Y, Zeng Z P. Novel robust stability criteria of discrete-time stochastic recurrent neural networks with time delay[J]. Neuroeomputing, 2009, 72(13-15):3343-3351.
  • 4Ou Y, Liu H Y, Si Y L. Stability analysis of discrete-time stochastic neural networks with time-varying delays[J]. Neurocomputing, 2010, 73(4-6):740-748.
  • 5Li L, Song A G, Xue M X. Stability analysis on delayed neural networks based on an improved delay- partitioning approach[J]. Journal of Computational and Applied Mathematics, 2011, 235(9):3086-3095.
  • 6Cho H J,Park J H.Novel delay-dependent robust stability criteria of delayed cellular neural networks[J].Chaos,Solitons&Fractals,2007,32(3):1194-1200.
  • 7Sun J,Liu G P,Chen J,et al.Improved stability criteria for neural networks with time-varying delay[J].Physics Letters A,2009,373(3):342-348.
  • 8Sun J,Chen J.Stability analysis of static recurrent neural networks with interval time-varying delay[J].Applied Mathematics and Computation,2013,221:111-120.
  • 9Huang H,Huang T W,Chen X P,et al.Exponential stabilization of delayed recurrent neural networks:a state estimation based approach[J].Neural Networks,2013,48:153-157.
  • 10Shao H Y,Han Q L.On stabilization for systems with two additive time-varying input delays arising from networked control systems[J].Journal of the Franklin Institute,2012,349(6):2033-2046.

共引文献3

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部