摘要
针对OFDM通信系统信道具有稀疏性且稀疏度未知的特点,提出了一种稀疏度自适应压缩感知信道估计算法,即变步长自适应压缩采样匹配追踪算法。该算法首先采用变步长匹配测试的估计方法对信道稀疏度进行预估,然后通过压缩采样匹配追踪改善估计结果,若压缩采样匹配追踪不能成功重构,则通过弱选择选取新的原子,渐进增加信号稀疏度。仿真结果表明:相较于传统自适应压缩感知重构算法,提出的VSACSMP算法具有更好的信道估计性能。
The channels of orthogonal frequency division multiplexing(OFDM)communication systems are sparse but the sparsity is unknown.Aiming at this characteristic,a sparsity adaptive channel estimation algorithm for compressive sensing,i.e.a variable step adaptive compressive sampling matching pursuit(VSACSMP)algorithm was proposed.In this algorithm,the estimation method of variable step size matching test was firstly adopted to estimate the channel sparsity.Then,the compressive sampling matching pursuit was used to improve the estimation result.If recovery was unsuccessful with the compressive sampling matching pursuit,weak selection would be utilized to choose new atoms and increase the signal sparsity gradually.The simulation results demonstrated that compared to traditional adaptive recovery algorithms for compressive sensing,the proposed VSACSMP algorithm could deliver better channel estimation performance.
作者
李姣军
蒋扬
邱天
黄明敏
LI Jiaojun;JIANG Yang;QIU Tian;HUANG Mingmin(College of Electrical and Electronic Engineering,Chongqing University of Technology,Chongqing 400054,China)
出处
《重庆理工大学学报(自然科学)》
CAS
北大核心
2021年第4期117-122,共6页
Journal of Chongqing University of Technology:Natural Science
基金
重庆市科委课题(2018CC35)。
关键词
OFDM系统
压缩感知
稀疏度预估
信道估计
orthogonal frequency division multiplexing system
compressed sensing
sparsity prediction
channel estimation