期刊文献+

基于压缩感知的OFDM稀疏信道估计算法 被引量:4

The Estimation Algorithm of OFDM Sparse Channel Based on Compressed Sensing
下载PDF
导出
摘要 针对OFDM通信系统信道具有稀疏性且稀疏度未知的特点,提出了一种稀疏度自适应压缩感知信道估计算法,即变步长自适应压缩采样匹配追踪算法。该算法首先采用变步长匹配测试的估计方法对信道稀疏度进行预估,然后通过压缩采样匹配追踪改善估计结果,若压缩采样匹配追踪不能成功重构,则通过弱选择选取新的原子,渐进增加信号稀疏度。仿真结果表明:相较于传统自适应压缩感知重构算法,提出的VSACSMP算法具有更好的信道估计性能。 The channels of orthogonal frequency division multiplexing(OFDM)communication systems are sparse but the sparsity is unknown.Aiming at this characteristic,a sparsity adaptive channel estimation algorithm for compressive sensing,i.e.a variable step adaptive compressive sampling matching pursuit(VSACSMP)algorithm was proposed.In this algorithm,the estimation method of variable step size matching test was firstly adopted to estimate the channel sparsity.Then,the compressive sampling matching pursuit was used to improve the estimation result.If recovery was unsuccessful with the compressive sampling matching pursuit,weak selection would be utilized to choose new atoms and increase the signal sparsity gradually.The simulation results demonstrated that compared to traditional adaptive recovery algorithms for compressive sensing,the proposed VSACSMP algorithm could deliver better channel estimation performance.
作者 李姣军 蒋扬 邱天 黄明敏 LI Jiaojun;JIANG Yang;QIU Tian;HUANG Mingmin(College of Electrical and Electronic Engineering,Chongqing University of Technology,Chongqing 400054,China)
出处 《重庆理工大学学报(自然科学)》 CAS 北大核心 2021年第4期117-122,共6页 Journal of Chongqing University of Technology:Natural Science
基金 重庆市科委课题(2018CC35)。
关键词 OFDM系统 压缩感知 稀疏度预估 信道估计 orthogonal frequency division multiplexing system compressed sensing sparsity prediction channel estimation
  • 相关文献

参考文献4

二级参考文献28

  • 1TONG Lang,SADLER B M,DONG Min.Pilot-assisted wireless transmissions[J].IEEE Signal Processing Magzine,2004,2(6):12-25.
  • 2VAN DE BEEK J J,EDFORS O.On channel estimation in OFDM systems[C]//Proc of IEEE VTC 1995.Piscataway:IEEE,1995,2:815-819.
  • 3WU C J,LIN D W.Sparse channel estimation for OFDM transmission based on representative subspace fitting[C]//Proc of IEEE 61st Veh Technol Conf.Piscataway:IEEE,2005,1:495-499.
  • 4PAREDES J L,ARCE G R,WANG Zhongmin.Ultra-Wideband compressed sensing:channel estimation[J].IEEE Journal of Selected Topics in Signal Processing,2007,1(3):383-395.
  • 5TAUBOCK G,HLAWATSCH F.A compressed sensing technique for ofdm channel estimation in mobile environments:exploiting channel sparsity for reducing pilots[C]//Proceedings of ICASSP'2008.Piscataway:IEEE,2008:2885-2888.
  • 6DONOHO D L.Compreesed sensing[J].IEEE Trans on Inf Theory,2006,52(4):1289-1306.
  • 7BARANIUK R G.Compressive sensing[J].IEEE signal Processing Magazine,2007,24(4):118-120,124.
  • 8MALLAT S,ZHANG Z.Mathcing pursuit with time-frequency dictionaries[J].IEEE Tram on Signal Processing,1993,41(12):3393-3415.
  • 9TROPP J A,GILBERTA C.Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Trans on lnformation Theory,2007,53(12):4655-4666.
  • 10COFFER S F,RAO B D.Sparse channel estimation via matching pursuit with application to equalization[J].IEEE Trans on Communications.2002,50(3):374-377.

共引文献128

同被引文献22

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部