期刊文献+

基于协处理器的HBase分类二级索引设计 被引量:2

Design of HBase Classification Secondary Index Based on Coprocessor
下载PDF
导出
摘要 针对HBase仅在行键上进行索引优化而非行键列查询的问题,提出一种基于协处理器的HBase分类二级索引方案。设计基于协处理器的索引管理和并行查询机制:利用Ob-server在内存中建立并维护索引,同时利用Endpoint设计并行查询算法,进而提升非行键列的查询性能。由于数据特征和查询需求决定了构建索引的类型,进一步设计分类内存索引模型,用以平衡查询性能和索引性能。在出租车GPS数据集上的实验结果表明:相较于基于Solr和Hi-Base的二级索引方案具有更好的整体性能。 Aiming at the problem that HBase only optimizes index for rowkey and the query performance of non-key column is low,a coprocessor-based HBase classification secondary index solution is proposed.In this solution,a coprocessor-based index management and parallel query mechanism is proposed.The index is established and maintained in memory by Observer.At the same time,a parallel query algorithm is designed based on Endpoint to improve the query performance.Since data characteristics and query conditions determine the type of index,a classified index model is further proposed to balance query performance and index performance.The results on taxi GPS dataset show that the overall performance of our solution is improved compared with the Solr-based scheme and HiBase.
作者 陈顺举 邹喆 刘锐 陶涛 汪超 郑林江 CHEN Shunju;ZOU Zhe;LIU Rui;TAO Tao;WANG Chao;ZHENG Linjiang(Chongqing Public Security Bureau Yubei Branch Traffic Patrol Police Detachment,Chongqing 401120,China;College of Computer Science,Chongqing University,Chongqing 400044,China)
出处 《重庆理工大学学报(自然科学)》 CAS 北大核心 2021年第4期142-151,200,共11页 Journal of Chongqing University of Technology:Natural Science
基金 国家重点研究计划课题(2017YFC0805200) 国家重点研究计划课题(2016YFC0801707)。
关键词 HBASE 二级索引 协处理器 内存索引 HBase secondary index coprocessor memory index
  • 相关文献

参考文献4

二级参考文献34

  • 1Garcia-Molina H,Salem K.Main-memory database systems:An overview.IEEE Transactions on Knowledge and Data Engineering,1992,4(6):509-516.
  • 2Lehman Tobin J et al.A study of index structures for main memory database management systems//Proceedings of the 12th VLDB Conference.Kyoto,Japan,1986:294-303.
  • 3Rao Jun,Ross Kenneth A.Cache conscious indexing for decision-support in main memory//Proceedings of the 25th VLDB Conference.Edinburgh,Scotland,UK,1999:78-89.
  • 4Rao Jun,Ross Kenneth A.Making B+-trees cache conscious in main memory//Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data.Dallas,Texas,USA,2000:475-486.
  • 5Zukowski Marcin.Balancing vectorized query execution with bandwidth-optimized storage[Ph.D.dissertation].Universiteit van Amsterdam,Amsterdam,The Netherlands,1999.
  • 6Bohannon Philip,Mcllroy Peter et al.Main-memory index structures with fixed-size partial keys//Proceedings of the 2001 ACM SIGMOD International Conference on Management of Data.Santa Barbara,California,USA,2001:163-174.
  • 7Cui Bin,Ooi Beng Chin et al.Main memory indexing:The case for BD-tree.IEEE Transactions on Knowledge and Data Engineering,2004,16(7):870-874.
  • 8Hankins Richard A,Patel Jignesh M.Effect of node size on the performance of cache-conscious B+-trees//Proceedings of the 2003 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems.San Diego,CA,USA,2003:283-294.
  • 9Ailamaki Anastassia et al.DBMSs on a modern processor:Where does time go?//Proceedings of the 25th VLDB Conference,Edinburgh,Scotland,UK,1999:266-277.
  • 10Lee Ig-Hoon,Shim Junho et al.CST-trees:Cache sensitive T-trees//Proceedings of the 12th International Conference on Database Systems for Advanced Applications.Bangkok,Thailand,2007:398-409.

共引文献254

同被引文献19

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部